

730EnN Instrukcja montażu, obsługi i konserwacji

Spis treści

1 Certyfikaty	. 3
1.1 Deklaracja zgodności	. 4
1.2 Deklaracja włączenia	. 5
2 Rozpakowywanie pompy	. 6
2.1 Wyjmowanie pompy z opakowania	6
2.2 Usuwanie opakowania	6
2.3 Kontrola	. 6
2.4 Dostarczane elementy składowe	. 6
2.5 Przechowywanie	. 6
3 Informacje dotyczące zwrotu pomp	. 7
4 Pompy perystaltyczne — ogólny opis	7
5 Gwarancja	. 8
6 Informacje dotyczące bezpieczeństwa	. 10
7 Specyfikacja pompy	. 14
7.1 Masa	. 15
7.2 Opcje głowic pompy	. 15
8 Zasady prawidłowej instalacji pompy	. 16
8.1 Ogólne zalecenia	. 16
8.2 Zalecenia i zakazy	17
9 Obsługa pompy	19
9.1 Układ klawiatury i identyfikatory przycisków	. 19
9.2 Uruchamianie i zatrzymywanie	. 20
9.3 Korzystanie z przycisków góra i dół	. 20
9.4 Prędkość maksymalna	20
9.5 Zmień kierunek obrotów	. 20
10 Podłączenie do zasilania	21
10.1 Kody kolorów przewodów	22
10.2 Okablowanie modułu NEMA – pompy EtherNet/IP™	22
10.3 Podłączanie ekranu złącza M12	. 24
11 Lista kontrolna uruchamiania	. 25
12 Okablowanie sterujące EtherNet/IP™	. 25
12.1 Elementy z tyłu pompy	. 26
12.2 Złącza RJ45	. 27

12.3 Okablowanie sterowania	27
12.4 Moduł N i moduł F	31
12.5 Złącza wejścia/wyjścia	34
12.6 Parametry zewnętrznego interfejsu pompy EtherNet/IP™	36
12.7 Topologia sieci	38
13 Pierwsze włączenie pompy	40
13.1 Wybór języka wyświetlania	40
13.2 Ustawienia domyślne dla pierwszego uruchomienia	42
14 Włączanie pompy w kolejnych cyklach zasilania	44
15 Menu główne	45
15.1 Ustawienia zabezpieczeń	46
15.2 Ustawienia ogólne	57
15.3 Zmień tryb	69
15.4 Ustawienia sterowania	70
15.5 Pomoc	71
16 Menu trybu	72
17 Tryb ręczny	73
17.1 Uruchomienie	73
17.2 Zatrzymanie	74
17.3 Zwiększanie i zmniejszanie natężenia przepływu	74
18 Kalibracja przepływu	76
18.1 Ustawianie kalibracji przepływu	76
19 Tryb EtherNet/IP™	78
19.1 Konfigurowanie ustawień EtherNet/IP™	78
19.2 Tryb EtherNet/IP™	82
19.3 Parametry pompy	82
19.4 Przewodnik zgodności EDS	97
20 Czujniki	98
20.1 Okablowanie czujnika	99
20.2 Konfigurowanie czujników	100
20.3 Opóźnienie startu	104
20.4 Zwykłe czujniki	106
20.5 Odczyt czujnika przepływu	117
21 Rozwiązywanie problemów	118
21.1 Kody błędów	118
21.2 Pomoc techniczna	120
22 Konserwacja napędu	121
23 Części zamienne napędu	122
24 Wymiana głowicy pompy	123
24.1 Wymiana głowicy pompy 720R i 720RE	123

25 Wymiana węży	124
25.1 Węże ciągłe	124
25.2 Elementy wężowe	124
26 Informacje dotyczące zamawiania	126
26.1 Numery katalogowe pompy	126
26.2 Numery części przewodów i elementów	127
26.3 Części zamienne głowicy pompy	129
27 Parametry użytkowe	
27.1 Dane wydajnościowe 720R, 720RE, 720R/RX i 720RE/REX	
28 Znaki towarowe	
29 Ograniczenie odpowiedzialności	
30 Historia publikacji	138
31 Wykaz tabel i rysunków	
31.1 Tabele	139
31.2 Rysunki	

Instrukcje oryginalne

Instrukcje oryginalne w tym podręczniku zostały napisane w języku angielskim. Inne wersje językowe podręcznika są tłumaczeniem instrukcji oryginalnych

1 Certyfikaty

Dokumenty certyfikacyjne znajdują się na następnych stronach.

1.1 Deklaracja zgodności

WATSON MARLOW Pumps	CE
Watson-Marlow Limited Falmouth Cornwall TR11 4RU England	EC Declaration of Conformity
 530 Cased pumps 630 Cased pumps 730 Cased pumps 	(Models: S, SN, U, UN, Du, DuN, Bp, BpN, En, EnN) (Models: S, SN, U, UN, Du, DuN, Bp, BpN, En, EnN) (Models: SN, UN, DuN, BpN, En, EnN)
2. Manufacturer: Watson Marlow Lto Bickland Water Ro Falmouth TR11 4RU UK	d ad
3. This declaration of	conformity is issued under the sole responsibility of the manufacturer
 All models and ver approved pump he 	sions of the 530, 630 and 730 series of cased peristaltic pump with all eads, tubing and accessories.
5. The object of the d harmonisation legi Machinery Directiv EMC Directive 201 ROHS Directive 20	leclaration described above is in conformity with the relevant Union slation: e 2006/42/EC 4/30/EC 015/863
 Harmonised stand: BS EN61010-1:20 measurement, con EN61326-1:2013 E requirements Part BS EN 60529:1992 	ards used: 10 third edition Safety requirements for electrical equipment for trol, and laboratory use Part 1: General requirements Electrical equipment for measurement, control and laboratory use – EMC 1: General requirements 2+A2:2013 Degrees of protection provided by enclosures (IP code)
 Intertek Testing an 61010-1:2010, IEC 61010-1:2010 and 	d Certification Ltd, No: 3272281, performed compliance testing to BS E 61010-1:2010, UL 61010-1:2010 and CAN/CSA C22.2 Bo issued certification of compliance to these standards.
Signed for and beh Watson Marlow Lto Falmouth, Novemb	nalf of: d per 2019
. A	lichoba
Simon Nicholson, Managing	Director, Watson-Marlow Limited

1.2 Deklaracja włączenia

WATSON MARLOW Pumps **Declaration of Incorporation** Watson-Marlow Ltd Falmouth Cornwall TR11 4RU England In accordance with the Machinery Directive 2006/42/EC that if this unit is to be installed into a machine or is to be assembled with other machines for installations, it shall not be put into service until the relevant machinery has been declared in conformity. We hereby declare that: Peristaltic Pump Series: 530, 630 and 730 cased pumps the following harmonised standards have been applied and fulfilled for health and safety requirements: Safety of Machinery - EN ISO 12100 Safety of Machinery - Electrical Equipment of Machines BS EN 60204-1 Quality Management System - ISO 9001 and the technical documentation is compiled in accordance with Annex VII(B) of the Directive. We undertake to transmit, in response to a reasoned request by the appropriate national authorities, relevant information on the partly completed machinery identified above. The method of transmission shall be by mail or email. The pump head is incomplete and must not be put into service until the machinery into which it is to be incorporated has been declared in conformity with the provisions of the Directive. Person authorised to compile the technical documents: NMM Nancy Ashburn, Head of Design & Engineering, Watson-Marlow Ltd Place and date of declaration: Watson-Marlow Ltd. 20.04.2020 Responsible person: Nichoba Simon Nicholson, Managing Director, Watson-Marlow Ltd

2 Rozpakowywanie pompy

2.1 Wyjmowanie pompy z opakowania

Rozpakować ostrożnie wszystkie części, zachowując opakowanie do momentu upewnienia się, że wszystkie elementy składowe zostały dostarczone i są w dobrym stanie. Porównać z podanym poniżej wykazem dostarczanych elementów składowych.

2.2 Usuwanie opakowania

Usunąć opakowanie w bezpieczny sposób, zgodnie z lokalnymi przepisami w tym zakresie. Karton zewnętrzny jest wykonany z tektury falistej i nadaje się do powtórnego przetworzenia.

2.3 Kontrola

Należy sprawdzić, czy wszystkie elementy zostały dostarczone. Sprawdzić elementy składowe pod kątem uszkodzeń transportowych. W przypadku stwierdzenia jakichkolwiek braków lub uszkodzeń niezwłocznie skontaktować się z dystrybutorem.

2.4 Dostarczane elementy składowe

Komponenty 730

- Jednostka napędowa pompy 730 wyposażona w głowicę pompy (w przypadku określenia jako pompy)
- Wyznaczony kabel zasilający (dołączany do pompy)
- Moduł 730N zapewniający stopień ochrony pompy IP66, NEMA 4X
- **Informacja:** niniejszy moduł jest zamontowany w celach transportowych, ale musi zostać zdemontowany, aby umożliwić podłączenie okablowania, wybór napięcia i kontrolę bezpieczników. Przed uruchomieniem pompy należy go ponownie zamontować.
- Broszura informacyjna dotycząca bezpieczeństwa produktu z instrukcją szybkiego uruchamiania

2.5 Przechowywanie

Ten produkt może być przechowywany przez dłuższy czas. Jednak po zakończeniu przechowywania należy zadbać, aby wszystkie części działały prawidłowo. Należy przestrzegać zaleceń dotyczących przechowywania oraz dat przydatności węży, które mają być użytkowane po przechowywaniu.

3 Informacje dotyczące zwrotu pomp

Zwracane produkty muszą uprzednio zostać gruntownie oczyszczone/odkażone. W celu potwierdzenia tego faktu należy wypełnić deklarację i przesłać ją do nas przed wysłaniem produktu.

Przed zwrotem urządzenia należy przesłać wypełnioną deklarację odkażenia wraz z wyszczególnieniem wszystkich cieczy, które miały styczność z tym urządzeniem.

Po odebraniu tej deklaracji wystawiamy numer autoryzacji zwrotu (RMA). Zastrzegamy sobie prawo umieszczenia w kwarantannie lub odmowy przyjęcia każdego urządzenia bez numeru autoryzacji zwrotu.

Dla każdego produktu na odpowiednim formularzu należy sporządzić oddzielną deklarację odkażenia wraz ze wskazaniem lokalizacji, do której ma zostać odesłane urządzenie. Kopię odpowiedniej deklaracji odkażenia można pobrać ze strony www.wmftg.com/decon w witrynie internetowej firmy Watson-Marlow.

W razie pytań skontaktuj się z lokalnym przedstawicielem firmy Watson-Marlow za pośrednictwem strony www.wmftg.com/contact.

4 Pompy perystaltyczne — ogólny opis

Pompy perystaltyczne są najprostszymi pompami — nie zawierają zaworów, uszczelnień ani dławnic, które mogłyby się zapychać lub korodować. Płyn styka się wyłącznie z wewnętrzną powierzchnią węża, co eliminuje niebezpieczeństwo zanieczyszczenia płynu przez pompę i pompy przez płyn. Pompy perystaltyczne mogą pracować na sucho i nie stwarza to zagrożenia.

Sposób działania

Elastyczna rurka jest ściskana między rolką a prowadnicą biegnącą po łuku okręgu, co tworzy zamknięcie w miejscu styku. W miarę przesuwania się rolki po rurce zamknięcie również się przesuwa. Po przetoczeniu się rolki po rurce powraca ona do pierwotnego kształtu, w wyniku czego powstaje w tym obszarze podciśnienie, które powoduje wypełnienie obszaru płynem zassanym z króćca wlotowego.

Zanim rolka dotrze do końca prowadnicy, druga rolka zaczyna ściskać wąż na początku prowadnicy, zamykając porcję płynu między punktami ściskania. Gdy pierwsza rolka zjeżdża z prowadnicy, druga przetacza się nadal, wyrzucając porcję płynu przez króciec tłoczny pompy. W tym samym czasie za drugą rolką tworzy się nowy obszar podciśnienia, do którego zasysana jest kolejna porcja płynu z króćca wlotowego.

Nie występuje przepływ wsteczny ani spuszczanie płynu i pompa skutecznie zamyka przewód rurkowy, gdy jest wyłączona. Eliminuje to konieczność stosowania zaworów.

Zasadę można obrazowo przedstawić ściskając elastyczny wąż kciukiem oraz palcem wskazującym i przesuwając palcami: płyn zostaje usunięty jednym końcem węża, a większa jego ilość zostaje zassana z drugiego końca.

W podobny sposób funkcjonują przewody pokarmowe zwierząt.

Odpowiednie zastosowania

Pompowanie perystaltyczne doskonale sprawdza się w przypadku większości płynów, w tym płynów lepkich, wrażliwych na ścinanie, korozyjnych i ściernych oraz zawiesin. Są one szczególnie użyteczne do pompowania w sytuacjach, gdy ważne jest zachowanie higieny.

Pompy perystaltyczne są pompami wyporowymi. Nadają się szczególnie do odmierzania, dawkowania i dozowania. Są łatwe w montażu i obsłudze oraz niedrogie w utrzymaniu.

5 Gwarancja

Firma Watson-Marlow Limited ("Watson-Marlow") gwarantuje, że ten produkt jest wolny od wad materiałowych i produkcyjnych przez okres pięciu lat od daty dostawy w warunkach normalnego użytkowania i obsługi.

Określenie zakresu odpowiedzialności firmy Watson-Marlow oraz rodzaju zadośćuczynienia za straty klienta wynikające z zakupu jakiegokolwiek produktu marki Watson-Marlow pozostaje w sferze uznania firmy Watson-Marlow, a możliwe środki obejmować będą naprawę, wymianę lub zwrot ceny zakupu.

Jeżeli nie uzgodniono inaczej na piśmie, niniejsza gwarancja ogranicza się do kraju, w którym dokonano zakupu produktu.

Żaden pracownik, agent ani przedstawiciel firmy Watson-Marlow nie ma prawa pociągać firmy Watson-Marlow do żadnej innej odpowiedzialności niż zakres powyższy, chyba że w formie pisemnej, w oparciu o dokument podpisany przez dyrektora firmy Watson-Marlow. Firma Watson-Marlow nie gwarantuje przydatności produktów do określonego celu.

W żadnym przypadku:

- i. I. koszty zadośćuczynienia klienta nie przekroczą ceny zakupu produktu,
- ii. firma Watson-Marlow nie ponosi odpowiedzialności za jakiekolwiek szczególne, pośrednie, przypadkowe, wtórne lub przykładowe szkody, jakkolwiek zachodzące, nawet jeśli firma Watson-Marlow zostanie powiadomiona o możliwości wystąpienia ww. szkód.

Firma Watson-Marlow nie ponosi odpowiedzialności za żadne straty, szkody lub wydatki bezpośrednio lub pośrednio związane lub wynikające z użytkowania jej produktów, włącznie ze zniszczeniami lub uszkodzeniami innych produktów, urządzeń, budynków, czy mienia. Firma Watson-Marlow nie ponosi odpowiedzialności za jakiekolwiek szkody wynikowe, włącznie z m.in. utratą zysków, niedogodnościami, utratą czasu, utratą pompowanego produktu czy utratą produkcji.

Gwarancja ta nie stanowi zobowiązania firmy Watson-Marlow do ponoszenia jakichkolwiek kosztów demontażu, instalacji, transportu, czy jakichkolwiek innych opłat wynikłych w związku z roszczeniem gwarancyjnym.

Firma Watson-Marlow nie odpowiada za uszkodzenia powstałe podczas transportu zwracanych elementów.

Warunki

- Produkty muszą zostać zwrócone zgodnie z wcześniejszymi uzgodnieniami z firmą Watson-Marlow lub do centrum serwisowego zatwierdzonego przez Watson-Marlow.
- Wszystkie naprawy i modyfikacje muszą zostać wykonane przez firmę Watson-Marlow Limited zatwierdzone centrum serwisowe Watson-Marlow, lub wykonane za wyraźną pisemną zgodą Watson-Marlow, podpisaną przez kierownika lub dyrektora Watson-Marlow.
- Wszelkie kontrole zdalne lub podłączenia systemu muszą zostać wykonane zgodnie z zaleceniami firmy Watson-Marlow.
- Systemy EtherNet/IP™ mogą być instalowane i certyfikowane wyłącznie przez autoryzowanego technika.

Wyjątki

- Materiały eksploatacyjne, w tym węże i elementy pompujące, nie są objęte gwarancją.
- Rolki głowic pompy nie są objęte gwarancją.
- Naprawy i serwis wymagane z powodu normalnego zużycia w ramach eksploatacji lub braku należytej i właściwej konserwacji nie są objęte gwarancją.
- Nieobjęte gwarancją są produkty, które w ocenie firmy Watson-Marlow zostały naruszone, niewłaściwie użyte, uległy celowemu lub przypadkowemu uszkodzeniu bądź zaniedbaniu.
- Uszkodzenia spowodowane udarem elektrycznym nie są objęte gwarancją.
- Uszkodzenia spowodowane nieprawidłowym okablowaniem lub okablowaniem nieodpowiadającym normom albo o zbyt niskiej jakości nie są objęte gwarancją.
- Uszkodzenia spowodowane atakiem chemicznym nie są objęte gwarancją.
- Urządzenia pomocnicze, takie jak wykrywacze nieszczelności, nie są objęte gwarancją.

- Uszkodzenia spowodowane promieniowaniem ultrafioletowym lub bezpośrednim światłem słonecznym nie są objęte gwarancją.
- Żadne głowice pompy ReNu nie są objęte gwarancją.
- Jakakolwiek próba demontażu produktu firmy Watson-Marlow spowoduje unieważnienie gwarancji.

Firma Watson-Marlow zastrzega sobie prawo do zmiany niniejszych warunków w każdej chwili.

6 Informacje dotyczące bezpieczeństwa

Niniejsze informacje dotyczące bezpieczeństwa powinny być uwzględniane łącznie z pozostałą treścią niniejszej instrukcji obsługi.

Ze względów bezpieczeństwa niniejsza pompa i jej głowica powinny być używane wyłącznie przez wykwalifikowanych, odpowiednio przeszkolonych pracowników, którzy zapoznali się z tą instrukcją, zrozumieli jej treść i przeanalizowali wszystkie wymienione w niej zagrożenia. Jeśli pompa będzie używana w sposób inny niż wskazany przez firmę Watson-Marlow Limited, zabezpieczenia pompy mogą nie zadziałać prawidłowo. Każda osoba uczestnicząca w instalacji lub konserwacji tego urządzenia powinna posiadać pełne kwalifikacje do wykonywania takich prac. Taka osoba powinna również znać wszystkie obowiązujące procedury, regulacje i wytyczne dotyczące bezpieczeństwa i higieny pracy.

Niniejszy symbol umieszczony na pompie i występujący w niniejszej instrukcji obsługi oznacza: Nakaz przestrzegania stosownej instrukcji bezpieczeństwa lub ostrzeżenie o potencjalnym zagrożeniu.

Niniejszy symbol umieszczony na pompie i występujący w niniejszej instrukcji obsługi oznacza: Nie dopuścić do kontaktu palców z ruchomymi częściami.

Niniejszy symbol umieszczony na pompie i występujący w niniejszej instrukcji obsługi oznacza: Przestroga — gorąca powierzchnia.

Niniejszy symbol umieszczony na pompie i występujący w niniejszej instrukcji obsługi oznacza: Przestroga — ryzyko porażenia prądem elektrycznym.

Niniejszy symbol umieszczony na pompie i występujący w niniejszej instrukcji obsługi oznacza: Należy używać środków ochrony indywidualnej.

Niniejszy symbol umieszczony na pompie i występujący w niniejszej instrukcji obsługi oznacza: Produkt ten należy poddać recyklingowi zgodnie z dyrektywą UE w sprawie zużytego sprzętu elektrycznego i elektronicznego (WEEE).

Wewnątrz pomp 630 i 730 znajdują się bezpieczniki termiczne z funkcją samoczynnego resetowania. W przypadku ich uruchomienia wyświetlany jest kod błędu "Err17 Under Voltage" (Zbyt niskie napięcie).

Podstawowe prace związane z podnoszeniem, transportem, instalacją, uruchomieniem, konserwacją i naprawą powinny być wykonywane wyłącznie przez wykwalifikowanych pracowników. Podczas wykonywania prac urządzenie musi być odłączone od zasilania sieciowego. Silnik musi być zabezpieczony przed przypadkowym uruchomieniem.

Niektóre pompy ważą więcej niż 18 kg (dokładna masa zależy od modelu i głowicy – patrz pompa). Przy podnoszeniu pompy należy przestrzegać standardowych zasad BHP. Aby ułatwić podnoszenie, w boki dolnej obudowy wbudowane zostały wnęki na palce. Ponadto, pompę można podnosić chwytając głowicę pompy i (jeśli zamontowany) moduł "N" z tyłu pompy.

Z tyłu pompy znajduje się wymienny bezpiecznik. W niektórych krajach wtyczka przewodu sieciowego wyposażona jest w dodatkowy wymienny bezpiecznik. Bezpieczniki muszą być wymieniane na bezpieczniki o tej samej mocy znamionowej.

Wewnątrz pompy nie ma żadnych bezpieczników ani części, które użytkownik może naprawiać samodzielnie.

Uwaga: przewód sieciowy jest fabrycznie podłączony do pompy i nie może być wymieniany przez użytkownika.

Ustawić przełącznik napięcia w pozycji odpowiadającej napięciu obowiązującemu w danym regionie.

Pompy o stopniu ochrony IP66 są wyposażone we wtyk sieciowy. Dławnica na końcu przewodu modułu NEMA ma stopień ochrony IP66. Wtyczka sieciowa podłączona na drugim końcu kabla NIE ma stopnia ochrony IP66. Zapewnienie stopnia ochrony IP66 tego połączenia z siecią zasilającą jest obowiązkiem użytkownika.

Ta pompa może być używana wyłącznie zgodnie z jej przeznaczeniem.

W celu ułatwienia obsługi i konserwacji należy zapewnić stały dostęp do pompy. Punkty dostępu nie mogą być ograniczone przeszkodami ani zablokowane. Do pompy nie wolno montować żadnych urządzeń innych niż te, które zostały przetestowane i zatwierdzone przez firmę Watson-Marlow. Mogłoby to doprowadzić do obrażeń ciała lub uszkodzenia mienia, za które firma nie ponosi odpowiedzialności.

Wtyczka sieciowa pompy jest urządzeniem rozłączającym (w nagłych wypadkach izoluje napęd silnika od zasilania sieciowego). Zabrania się ustawiania pompy w sposób ograniczający rozłączanie wtyczki sieciowej.

Jeżeli planowane jest przetłaczanie niebezpiecznych płynów, konieczne jest opracowanie i wdrożenie procedur bezpieczeństwa właściwych dla danego płynu i zastosowania, aby zapobiec obrażeniom ciała.

Ten produkt nie spełnia wymogów dyrektywy ATEX i nie wolno go używać w atmosferach zagrożonych wybuchem.

Należy upewnić się, że substancje chemiczne, które będą pompowane, mogą być wykorzystywane z głowicą pompy, smarami (w stosownych przypadkach), przewodami, rurami i złączkami stosowanymi z pompą. Proszę zapoznać się z przewodnikiem kompatybilności chemicznej, który można znaleźć na stronie: www.wmftg.com/chemical. Jeśli pompa ma służyć do tłoczenia jakiegokolwiek innego środka chemicznego, prosimy o kontakt z firmą Watson-Marlow w celu potwierdzenia zgodności.

Jeśli funkcja Automatycznego Wznawiania Pracy jest włączona, pompa może zostać włączona natychmiast po przywróceniu zasilania.

Automatyczne Wznawiania Pracy ma wpływ tylko na pracę w trybie ręcznym i trybie EtherNet/IP™.

Jeśli Automatyczne Wznawianie Pracy, na ekranie jest wyświetlony symbol "!", ostrzegający użytkowników o możliwości zadziałania pompy bez żadnej ręcznej interwencji (pompa wznawia działanie z wcześniejszymi ustawieniami).

Funkcji Automatycznego Wznawiania Prac nie można używać częściej niż:

1 uruchomienie zasilania sieciowego na 2 godziny

Gdy wymagana jest bardzo duża liczba uruchomień, zaleca się zdalne sterowanie.

Jeżeli pompa jest skonfigurowana do pracy w trybie EtherNet/IP[™], będzie reagowała na zdalne polecenia w dowolnym momencie, w tym natychmiast po włączeniu zasilania. Pompa może pracować bez żadnej ręcznej interwencji (np. zdalna wartość zadana może uruchomić pompę bez konieczności naciskania klawiszy).

Wewnątrz głowicy pompy znajdują się poruszające się części. Przed otwarciem zamykanych za pomocą narzędzi osłony lub bieżni, należy upewnić się, że spełnione są następujące zalecenia bezpieczeństwa:

- 1. Upewnij się, że pompa jest odłączona od źródła zasilania.
- 2. Upewnić się, że w rurociągu nie ma ciśnienia.
- W przypadku uszkodzenia węża upewnić się, że cały płyn znajdujący się w głowicy pompy została odprowadzony do bezpiecznego naczynia, pojemnika lub spuszczony.
- 4. Stosować odpowiednie osobiste wyposażenie ochronne (PPE).

Podstawowe zabezpieczenie operatora przed obracającymi się częściami pompy stanowi osłona głowicy pompy. Elementy zabezpieczające różnią się w zależności od typu głowicy pompy. Patrz sekcja głowic pompy w niniejszej instrukcji.

7 Specyfikacja pompy

tab. 1 - Dane techniczne	
Temperatura robocza	Od 5°C do 40°C
Temperatura przechowywania	730: -25 °C do 65 °C (-13 °F do 149 °F)
Wilgotność (bez skraplania)	80% do 31°C ze spadkiem liniowym do 50% w temp. 40°C
Maksymalna wysokość n.p.m.	2000 m (6560 stóp)
Moc znamionowa	730: 350 VA
Napięcie zasilania	100–120 V/200–240 V 50/60 Hz 1-fazowe (zależnie od regionalnych standardów kabli i zasilania)
Maksymalne wahania napięcia	+/-10% napięcia znamionowego. Wymagane jest odpowiednio wyregulowane źródło zasilania sieciowego z okablowaniem zapewniającym odporność na zakłócenia.
Prąd pełnego obciążenia	730: < 1,5 A przy 230 V, < 3,0 A przy 115 V
Obciążalność bezpiecznika	T2,5AH250 V (5x20 mm)
Kategoria montażu (kategoria zabezpieczenia przepięciowego)	Ш
Stopień zanieczyszczenia	2
IP	730: IP66 zgodnie z BS EN 60529. Spełnia wymagania norm NEMA 4X do NEMA 250 * (zastosowanie w pomieszczeniach – chronić przed długotrwałym narażeniem na promieniowanie UV)
Hałas	730: < 85 dB(A) przy 1 m
Zakres sterowania	730: 0,1-360 obr./min (3600:1)
Prędkość maksymalna	730: 360 obr./min

7.1 Masa

tab. 2 - Masa						
730 Tylko napęd		+ 720R, 720RE		+ 720RX, 720REX		
	kg	funtów uncji	kg	funtów uncji	kg	funtów uncji
IP66 (NEMA 4X)	18,5	40 13	25	55 2	31,5	69 7

Niektóre pompy ważą więcej niż 18 kg (dokładna masa zależy od modelu i głowicy – patrz pompa). Przy podnoszeniu pompy należy przestrzegać standardowych zasad BHP. Aby ułatwić podnoszenie, w boki dolnej obudowy wbudowane zostały wnęki na palce. Ponadto, pompę można podnosić chwytając głowicę pompy i (jeśli zamontowany) moduł z tyłu pompy.

7.2 Opcje głowic pompy

rys. 1 - Gama pomp 730

720R, 720R/RX, 720RE, 720RE/REX:

8 Zasady prawidłowej instalacji pompy

8.1 Ogólne zalecenia

Zaleca się umiejscowienie pompy na płaskiej, poziomej i sztywnej powierzchni, wolnej od nadmiernych drgań, w celu zapewnienia odpowiedniego smarowania skrzynki przekładniowej i prawidłowego działania głowicy pompy. Należy zapewnić swobodny przepływ powietrza wokół pompy, aby umożliwić odpływ ciepła. Temperatura otoczenia pompy nie może przekraczać zalecanej maksymalnej temperatury roboczej.

Przycisk STOP na pompie, dostarczany wraz z klawiaturą, zawsze zatrzymuje pompę. Zaleca się jednak zainstalowanie odpowiedniego lokalnego wyłącznika awaryjnego na głównym przewodzie zasilającym pompy.

Nie należy układać więcej pomp jedna na drugiej niż zalecana maksymalna liczba. W przypadku układania pomp jedna na drugiej, temperatura otoczenia wokół wszystkich pomp nie może przekraczać zalecanej maksymalnej temperatury roboczej.

rys. 2 - Układanie pomp w stos

Pompa może być skonfigurowana w taki sposób, aby kierunek obrotów rotora był zgodny z ruchem wskazówek zegara lub przeciwny do ruchu wskazówek zegara, stosownie do potrzeb.

Należy jednak zwrócić uwagę, że w przypadku niektórych głowic pomp czas eksploatacji węża jest dłuższy, w przypadku gdy rotor obraca się w kierunku zgodnym z ruchem wskazówek zegara, a wydajność w odniesieniu do ciśnienia będzie maksymalna w przypadku gdy rotor obraca się w kierunku przeciwnym do ruchu wskazówek zegara. Aby osiągnąć ciśnienie w niektórych głowicach, pompa musi obracać się w kierunku przeciwnym do ruchu wskazówek zegara.

rys. 3 - Kierunek wirnika

Pompy przewodowe są urządzeniami samozasysającymi, a samouszczelnianie zabezpiecza je przed przepływem wstecznym. Poza opisanymi poniżej, nie ma potrzeby instalowania zaworów w liniach doprowadzających i odprowadzających.

Użytkownikom zaleca się zainstalowanie zaworu jednokierunkowego pomiędzy pompą a rurociągiem tłocznym, w celu zapobiegania nagłemu uwolnieniu cieczy pod ciśnieniem w przypadku uszkodzenia głowicy pompy lub rurociągu. Zawór ten należy zamontować bezpośrednio za wylotem z pompy.

Zawory na rurociągach przepływu technologicznego należy otworzyć przed uruchomieniem pompy. Użytkownikom zaleca się zainstalowanie zaworu nadmiarowego pomiędzy pompą a zaworem po stronie odprowadzającej pompy w celu ochrony przed uszkodzeniem spowodowanym przypadkowym włączeniem urządzenia przy zamkniętym zaworze odpływowym.

8.2 Zalecenia i zakazy

- Nie instalować pompy w ciasnym miejscu z niewystarczającym przepływem powietrza wokół pompy.
- Dopilnować, aby rurki tłoczne i ssawne były jak najkrótsze najlepiej nie krótsze niż jeden metr — i poprowadzone w jak najprostszej linii. Łuki powinny mieć duży promień: co najmniej cztery razy większy od średnicy przewodu. Dopilnować, aby rury łączące i złącza miały odpowiednie wartości znamionowe dostosowane do przewidywanego ciśnienia w rurociągu. Unikać zwężek rurowych i odcinków przewodów o mniejszej średnicy od przekroju głowicy pompy — dotyczy to w szczególności rurociągów po stronie ssawnej. Żadne zawory na rurociągu nie mogą ograniczać przepływu. Wszystkie zawory na linii przepływu muszą być otwarte, gdy pompa pracuje.
- Należy upewnić się, że dłuższe węże są połączone z króćcem dolotowym lub wylotowym pompy gładkim elastycznym wężem o długości co najmniej jednego metra, minimalizując straty pulsowania i pulsację w rurociągu. Jest to szczególnie istotne przy cieczach lepkich i przy połączeniu ze sztywnymi instalacjami rurociągowymi.
- Stosować rurociągi ssące i tłoczące o średnicach wewnętrznych równych lub większych niż średnica wewnętrzna rurociągu. Na potrzeby tłoczenia lepkich płynów wykorzystywać przewody rurowe o średnicy wewnętrznej kilkakrotnie większej od średnicy węża pompy.
- Jeśli to możliwe, ustawić pompę na wysokości poziomu płynu, który ma być przetłaczany, lub nieznacznie poniżej tego poziomu. Zapewni to napływ płynu na ssaniu i maksymalną wydajność pompowania.
- Dopilnować, aby w przypadku przetłaczania lepkich płynów pompa pracowała z niską prędkością. Napływ płynu na ssaniu zwiększa wydajność pompowania, w szczególności w przypadku lepkich materiałów.
- Po wymianie przewodów, cieczy oraz wszelkich rurociągów łączących należy przeprowadzić ponowną kalibrację. Zaleca się również okresowe kalibrowanie pompy w celu utrzymania dokładności.
- Nie pompować żadnych substancji chemicznych niezgodnych z rurociągiem lub głowicą pompy.
- Zabrania się uruchamiania pompy bez rurociągu lub innego elementu zamontowanego na głowicy.
- Nie łącz przewodów sterowania i zasilania.

 Należy upewnić się, że produkt jest wyposażony w moduł N, że moduł ten jest wyposażony w nienaruszone uszczelnienia i że jest prawidłowo umiejscowiony. Aby zachować stopień ochrony IP/NEMA, należy upewnić się, że otwory dławnic kablowych są prawidłowo uszczelnione.

Dobieranie węża: przewodnik dotyczący zgodności chemicznej opublikowany na witrynie internetowej firmy Watson Marlow jest wskazówką. W przypadku jakichkolwiek wątpliwości, co do zgodności materiału, z którego wykonany jest wąż oraz wykorzystywanej cieczy, należy zwrócić się do firmy Watson-Marlow z prośbą o kartę próbek węży w celu dokonania badań zanurzeniowych.

W przypadku korzystania z węża ciągłego wykonanego z tworzywa Marprene lub Bioprene po pierwszych 30 minutach pracy należy ponownie naprężyć wąż.

9 Obsługa pompy

9.1 Układ klawiatury i identyfikatory przycisków

rys. 4 - Układ klawiatury i identyfikatory przycisków

Przycisk DOM

Naciśnięcie przycisku **HOME** przywraca ostatni znany tryb pracy. Jeżeli przycisk **HOME** zostanie naciśnięty podczas modyfikowania ustawień pompy, wszystkie zmiany ustawień zostaną zignorowane i zostanie przywrócony ostatni znany tryb pracy.

Przyciski FUNKCYJNE

PRZYCISKAMI FUNKCYJNYMI uruchamiane są funkcje wyświetlane na ekranie tuż nad każdym z przycisków.

Πρζψχισκι Λ ί ∨

Te przyciski służą do zmiany programowalnych wartości pompy. Są one również używane do przesuwania paska wyboru w górę i w dół menu.

Przycisk MODE (Tryb)

Przycisk **MODE** służy do zmiany trybów lub ich ustawień. Przyciskiem **MODE** można w dowolnym momencie otworzyć menu trybu. Jeżeli przycisk **MODE** zostanie naciśnięty w trakcie modyfikowania ustawień pompy, wszystkie zmiany ustawień zostaną zignorowane i wyświetlone zostanie **MODE**.

9.2 Uruchamianie i zatrzymywanie

rys. 5 - Uruchamianie i zatrzymywanie

9.3 Korzystanie z przycisków góra i dół

rys. 6 - Korzystanie z przycisków góra i dół

9.4 Prędkość maksymalna

rys. 7 - Prędkość maksymalna

rys. 8 - Zmień kierunek obrotów

10 Podłączenie do zasilania

Wymagane jest odpowiednio wyregulowane źródło zasilania sieciowego z okablowaniem zapewniającym odporność na zakłócenia. Napędy te nie powinny znajdować się w pobliżu urządzeń elektrycznych, które mogą wywoływać zaburzenia sieciowe. Zaliczają się do nich np. styczniki 3-fazowe i nagrzewnice indukcyjne.

Ustaw przełącznik napięcia na 115 V w przypadku źródła zasilania 100-120 V 50/60 Hz lub na 230 V w przypadku źródła zasilania 200-240 V 50/60 Hz. Przed podłączeniem do zasilania sieciowego należy bezwzględnie sprawdzić ustawienie przełącznika napięcia. W przeciwnym razie pompa może ulec uszkodzeniu.

~100-120V

Podłącz urządzenie odpowiednio do uziemionego źródła jednofazowego zasilania.

Jeśli typ pompy jest wyposażony w moduł N, wówczas gdy moduł jest na swoim miejscu przełącznik napięcia nie jest widoczny. Jest on zamontowany na tablicy rozdzielczej z tyłu pompy i chroniony przed wodą przez moduł N. Aby uzyskać dostęp do tablicy rozdzielczej, należy zdjąć moduł. Nie należy włączać pompy do momentu sprawdzenia, że jest ona dostosowana do posiadanego zasilania. Sprawdzenia można dokonać zdejmując moduł i sprawdzając przełącznik, a następnie montując moduł z powrotem.

3.

1.

rys. 9 - Przełącznik napięcia

W instalacjach, w których występują nadmierne szumy powodowane przez urządzenia elektryczne zaleca się stosowanie dostępnego na rynku zabezpieczenia przeciwprzepięciowego i/lub do tłumienia zakłóceń.

2.

4

Dopilnować, aby wszystkie kable zasilające miały wartości znamionowe właściwe do współpracy z urządzeniem. Podłączać do zasilania tylko za pomocą otrzymanego w zestawie kabla.

Pompa musi być ustawiona tak, aby urządzenie odłączające zasilanie było łatwo dostępne podczas użytkowania urządzenia. Wtyczka zasilania pompy jest urządzeniem rozłączającym (w nagłych wypadkach izoluje napęd od zasilania sieciowego).

Pompy o stopniu ochrony IP66 są wyposażone we wtyk sieciowy. Dławnica na końcu przewodu modułu NEMA ma stopień ochrony IP66. Wtyczka sieciowa podłączona na drugim końcu kabla NIE ma stopnia ochrony IP66. Zapewnienie stopnia ochrony IP66 tego połączenia z siecią zasilającą jest obowiązkiem użytkownika.

10.1 Kody kolorów przewodów

tab. 3 - Kody kolorów przewodów

Typ złączki	Kolor europejski	Kolor północno-amerykański
Faza	Brązowy	Czarny
Neutralny	Niebieski	Biały
Uziemienie	Zielony/żółty	Zielony

10.2 Okablowanie modułu NEMA – pompy EtherNet/IP™

Moduły NEMA 4X zamontowane w pompach z osłoną EnN 530, 630 i 730 En wyposażone są w dwie pary portów przewodów. Dostępne są dwa porty M16 wraz z dławnicami do uszczelniania okrągłych przewodów o średnicy od 4 mm do 10 mm (od 5/32 cala do 13/32 cala). Połączenie Ethernet odbywa się za pomocą dwóch złączy M12 zamontowanych z tyłu modułu NEMA.

rys. 10 - Ekranowanie uziemienia przewodów sterowania wEtherNet/IP™ module NEMA

Ekranowanie uziemiające kabla sterującego podłączone do zacisku uziemienia (J6) na płytce adaptera w przypadku stosowania plastikowego dławika kablowego.

rys. 10 - Ekranowanie uziemienia przewodów sterowania wEtherNet/IP™ module NEMA

W przypadku zastosowania dławika EMC nie jest wymagane dodatkowe ekranowanie uziemiające kabla sterującego.

Moduł NEMA z zestawem do montażu przewodzącego (dostępny jako opcja w pompach En w przypadku kabli sieciowych EtherNet/IP™, jeśli jest wymagany).

10.3 Podłączanie ekranu złącza M12

rys. 11 - Podłączanie ekranu złącza M12

Modele EtherNet/IP™

- Korpus i ekran kabla złączy M12 Ethernet odizolowane są domyślnie od metalowego korpusu modułu NEMA i uziemienia sieci elektrycznej. Umożliwia to połączenie z systemami automatyki przemysłowej w protokole EtherNet/IP™ zgodnie ze standardem EtherNet/IP™.
- Jeśli wymagane jest połączenie korpusu i ekranu kabla z uziemieniem sieci elektrycznej na potrzeby EMC lub Ethernet TCP, domyślny kołnierz mocujący M12 (MN2934T) z tworzywa sztucznego można wymienić na jego wersję ze stali nierdzewnej (MN2935T). Pierścień o-ring i podkładka uszczelniająca M12 muszą być poprawnie osadzone, aby utrzymane było uszczelnienie na poziomie IP66.

11 Lista kontrolna uruchamiania

Uwaga: Patrz także "Wymiana węży" on page124.

- Upewnić się, że wykonano należyte połączenia między pompą a rurą ssawną i odprowadzającą.
- Upewnić się, że wykonano należyte połączenie z odpowiednim źródłem zasilania.
- Należy upewnić się, czy przestrzegane są zalecenia znajdujące się w sekcji "Zasady prawidłowej instalacji pompy" on page16.

12 Okablowanie sterujące EtherNet/IP[™]

Zabrania się podawania zasilania sieciowego na złącze D-Sub. Na przedstawione piny należy zastosować odpowiednie sygnały. Ograniczyć sygnały do maksymalnych podanych wartości. Nie podawać napięcia na pozostałe piny. Może to spowodować trwałe uszkodzenie niepodlegające gwarancji.

Sygnały 4–20 mA i niskonapięciowe mają być odseparowane od zasilania sieciowego. Stosować oddzielne kable wejściowe z dławnicami. Wskazane jest stosowanie się do najlepszych praktyk EMC oraz korzystanie z ekranowanych dławnic.

12.1 Elementy z tyłu pompy

12.2 Złącza RJ45

Podłączyć kabel sieciowy RJ45 (kategorii CAT5 lub wyższej, najlepiej z ekranowaniem) z komputera do złącza pompy 1 lub 2.

rys. 12 - Złą	icza RJ45	
LED 1	LED 2	Wskazanie
Niskie	Niskie	Wył.
Niskie	Wysokie	Żółta dioda LED świeci, gdy wykryte zostanie łącze. Pulsowanie wskazuje prędkość transmisji 10 Mbit
Wysokie	Niskie	Jedna zielona dioda LED świeci, gdy wykryte zostanie łącze. Pulsowanie wskazuje prędkość transmisji 100 Mbit
Wysokie	Wysokie	Dwie zielone diody LED świecą, gdy wykryte zostanie łącze. Pulsowanie wskazuje prędkość transmisji 1 Gbit.

12.3 Okablowanie sterowania

Standardowe 9-pinowe złącze D czujnika (żeńskie / gniazdo do zabudowy)

Zalecany kabel sterujący: 7/0,2 mm 24AWG ekranowany, okrągły. Ekran kabla powinien być uziemiony za pomocą połączenia 360° do przewodzącej obudowy.

rys. 13 - Okablowanie 9-stykowego złącza D czujnika

Legenda 3	ymboli				
	Praca	Ð	Wejście	₽0	Zmiana kierunku z klawiatury
•	Zatrzymanie	÷Ð	Wyjście	-×-	Suche (brak wycieków)
6	Obroty prawobieżne	Ł	Sterowanie ręczne (klawiatura)		Mokre (wykryto wyciek)
G	Obroty lewobieżne		Analogowy		
tab. 4 - Po	dłączanie złącza D	-Sub			
W Nazwa sygnału w		Wejście lub	Konfigurowalne	Svan	ał odpowiedzi
		wyjście	2	.,,,	
		wyjście Wejście	Tak		0-10V/ 4-20mA A [34K/ 250R]

tab. 4 - Podłączanie złącza D-Sub

Nazwa sygnału	Wejście lub wyjście	Konfigurowalne	Sygnał odpowiedzi
$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \hline \end{array}$	Wejście	Tak	FREQ 5V-24V 1mA
	Wejście	Tak	LEAK ☆ 0 → ▲ 1[5-24V] ▲

tab. 4 - Podłączanie złącza D-Sub					
Nazwa sygnału	Wejście lub wyjście	Konfigurowalne	Sygnał odpowiedzi		
VAUX (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	Wejście	Tak	PRESSURE ○ 0		
	Wejście	Tak	START STOP ▷ 0 		

12.4 Moduł N i moduł F

Zabrania się podawania zasilania sieciowego na złącza M12. Doprowadzać do zacisków prawidłowe sygnały. Ograniczyć sygnały do maksymalnych podanych wartości. Nie doprowadzać napięcia do odmiennych zacisków. Może to spowodować trwałe uszkodzenie niepodlegające gwarancji.

Do wersji IP66 (NEMA 4X) pompy należy stosować zalecane przewody i dławnice kablowe. W przeciwnym wypadku może dojść do pogorszenia stopnia ochrony.

Upewnij się, że osłona modułu jest zawsze prawidłowo zamocowana za pomocą wszystkich dostarczonych śrub. Niezastosowanie się do tego zalecenia może spowodować obniżenie stopnia ochrony IP66 (NEMA 4X).

Należy upewnić się, że wszystkie niewykorzystane otwory w module są uszczelnione dostarczonymi zaślepkami. Niezastosowanie się do tego zalecenia może spowodować obniżenie stopnia ochrony IP66 (NEMA 4X).

rys. 14 - Moduł N i moduł F

- 1. Port M16
- 3. Złącze M12 Połączenie Ethernet

2. Port M16

4. Złącze M12 – Połączenie Ethernet

Połączenie Ethernet

Z tyłu modułu N znajdują się dwa złącza komunikacyjne połączenia Ethernet (3,4). Układ styków obu złączy jest identyczny. Układ styków i reakcję sygnałów opisano poniżej.

Wymagane wtyczki i kable do tych złączy: M12, męskie, 4-stykowe, D-code, ekranowane.

rys. 15 - Połączenie Ethernet

Zasilacz PCB

Uwaga: Moduł zasilacza można odłączyć za pomocą dźwigni wysuwania kabla taśmowego. Wskazane jest pozostawienie złącza 9 W podłączonego na stałe do pompy.

Zalecany kabel sterujący: metryczny = 0,05 mm2 – 1,31 mm2, drut i linka. USA = 30 AWG – 16 AWG drut i linka. Kabel: o przekroju kołowym. Maks./min. średnica zewnętrzna dla zapewnienia szczelności podczas przejścia przez standardową dławnicę: 9,5–5 mm. Aby zapewnić szczelność, przekrój kabla musi być okrągły.

Opcje zasilania

Płytka adaptera NEMA dostępna jest z opcją separowanego zasilacza (moduł F). Jest na niej zamontowane separowane zasilanie 24 V (maksymalne obciążenie wyjściowe 80 mA), U1. Jak widać na ilustracji, U1 całkowicie odseparowuje zacisk 24 V i 0 V od wewnętrznych zasilaczy pompy.

Moduł F przydaje się, gdy czujnik wymaga separowanego zasilania lub ma wyjście 4–20 mA, którego nie można użyć z uziemionym rezystorem obciążeniowym znajdującym się w pompie.

12.5 Złącza wejścia/wyjścia

Legenda	symboli				
	Praca	Ð	Wejście	€ ک	Zmiana kierunku z klawiatury
	Zatrzymanie	€	Wyjście	-×ָׂ-	Suche (brak wycieków)
6	Obroty prawobieżne	Ł	Sterowanie ręczne (klawiatura)		Mokre (wykryto wyciek)
G	Obroty lewobieżne	Ľ	Analogowy		
tab. 5 - Z	łącza wejścia/wyjścia	a			
Nr złączki	Funkcja	Wejście lub wyjście	Konfigurowalne	Sygna	ał odpowiedzi
J1			Nie	Połącz	enie z pompą
J2	d+ HWP	Wejście	Tak		0-10V/ 4-20mA A [34K/ 250R]
J3	HERE ANALOGUE 2	Wejście	Tak	ANALOGUE #2	0-10V/ 4-20mA / [34K/ 250R]

tab. 5 - Złącza wejścia/wyjścia

•	• ••			
Nr złączki	Funkcja	Wejście lub wyjście	Konfigurowalne	Sygnał odpowiedzi
J4	STOPILEAK SP LK 22V	Wejście	Tak	START STOP \triangleright 0 $-\bigcirc$ \square 1 [5-24V] \triangle LEAK \clubsuit 0 $-\bigcirc$ \triangle 1 [5-24V] \triangle
J5	PRESS/FREQ PRESS/VA/FREQ VUCULUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	Wejście	Tak	PRESSURE ▷ 0 □ 1 [5-24V] ⊥ FREQ 5V-24V 1mA
J6	1. Uziemienie 2. Uziemienie		Nie	

12.6 Parametry zewnętrznego interfejsu pompy EtherNet/IP™

tab. 0 - Farametry interrepsi zewiętrznego										
Parametr		Wartoś	i graniczi	ne	Jednostki	Uwagi				
	Sym	Min.	Znam.	Maks.						
Wysoka wartość napięcia wejścia cyfrowego	VD_{IH}	5		24	V	Nieszczelność, zatrzymanie, PRESSURE_ALARM, częstotliwość				
Niska wartość napięcia wejścia cyfrowego	VD _{IL}	0		0.8	V	Nieszczelność, zatrzymanie, PRESSURE_ALARM, częstotliwość				
Bezwzględna maksymalna wartość napięcia wejścia cyfrowego	VD _{in}	-30		30	V	Niesprawność				
Rezystancja wejścia cyfrowego	RD _{in}	10		110	kΩ	110 K przy ≤ 5 V				
Zakres częstotliwości	F _{max}	1		1000	Hz	Częstotliwość				
Częstotliwość powtórzeń	F _{max}	1		10	Hz	Nieszczelność, zatrzymanie, ciśnienie				
Wejście analogowe, tryb napięciowy	VA _{in}	-15	10	30	٧	Zakres 0–10 V (impedancja źródłowa 100 R)				
Wejście analogowe, tryb napięciowy	RVA _{in}		34.4		kΩ	±3 %				
Zakres pomiaru wejścia analogowego	I _{in}	0		25	mA					
Bezwzględna maksymalna wartość prądu wejścia analogowego	IA _{in}	-50		28	mA	Wartość graniczna rozpraszania				
Bezwzględna maksymalna wartość napięcia wejścia analogowego	VA _{in}	0		7.0	V	Wartość graniczna rozpraszania				
Rezystancja wejścia analogowego	$\operatorname{RI}_{\operatorname{IN}}$		250	270	Ω	Rozdzielczość wykrywania 250 R				
Szerokość pasma filtra wejścia analogowego	BW		67		Hz	Szerokość pasma - 6 dB				

tab. 6 - Parametry interfejsu zewnętrznego
tab. 6 - Parametry interfejsu zewnętrznego

Parametr	,	Wartośc	i graniczr	ie	Jednostki	Uwagi
	Sym	Min.	Znam.	Maks.		
Wyjście zasilania 22 V	V _{aux}		18	30	V	Bez regulacji
Separowane wyjście zasilania 24 V	V24		24			
Prąd obciążenia zasilania 22/24 V				80	mA	Bezpiecznik z funkcją samoczynnego resetowania

12.7 Topologia sieci

rys. 18 - Gwiazda

rys. 19 - Pierścień

rys. 20 - Topologia linii

tab. 7 - Dopuszczalna jedna dodatkowa para połączeń		
Typ kabla – maksymalna długość 100 m	Z modułem NEMA	Bez modułu NEMA
Kabel z dwoma złączami		
	V	✓
Kabel z jedną dodatkową parą złączy		
	¥	¥
Kabel z dwoma dodatkowymi parami złączy		
	×	~

13 Pierwsze włączenie pompy

1. Włączyć zasilanie pompy. Na trzy sekundy zostanie wyświetlony ekran startowy z logo Watson-Marlow Pumps.

13.1 Wybór języka wyświetlania

1. Użyj przycisków **A/v**, aby wybrać żądany język, a następnie naciśnij **SELECT**.

 Wybrany język zostanie wyświetlony na ekranie. Naciśnij CONFIRM, aby kontynuować. Wszystkie komunikaty będą od teraz wyświetlane w wybranym języku.

 Naciśnij **REJECT**, aby powrócić do ekranu wyboru języka. Powoduje to przejście do ekranu głównego.

13.2 Ustawienia domyślne dla pierwszego uruchomienia

Jeśli funkcja Automatycznego Wznawiania Pracy jest włączona, pompa może zostać włączona natychmiast po przywróceniu zasilania. Automatyczne Wznawiania Pracy ma wpływ tylko na pracę w trybie ręcznym i trybie EtherNet/IP™.

.

Jeśli Automatyczne Wznawianie Pracy, na ekranie jest wyświetlony symbol "!", ostrzegający użytkowników o możliwości zadziałania pompy bez żadnej ręcznej interwencji (pompa wznawia działanie z wcześniejszymi ustawieniami).

Funkcji Automatycznego Wznawiania Prac nie można używać częściej niż:

1 uruchomienie zasilania sieciowego na 2 godziny

Gdy wymagana jest bardzo duża liczba uruchomień, zaleca się zdalne sterowanie.

Jeżeli pompa jest skonfigurowana do pracy w trybie EtherNet/IP[™], będzie reagowała na zdalne polecenia w dowolnym momencie, w tym natychmiast po włączeniu zasilania. Pompa może pracować bez żadnej ręcznej interwencji (np. zdalna wartość zadana może uruchomić pompę bez konieczności naciskania klawiszy).

Parametry robocze pompy są wstępnie ustawione w sposób podany w poniższej tabeli.

Parametr	Domyślnie 730
Język	Nie ustawiony
Tryb domyślny	Tryb ręczny
Domyślna prędkość ręczna	360 obr./min
Status pompy	Stopped (Zatrzymana)
Maks. prędkość	360 obr./min
Kierunek	CW (zgodnie z kierunkiem ruchu wskazówek zegara)
Głowica pompy	720R
Rozmiar węża	25.4 mm
Materiał węża	Bioprene
Kalibracja przepływu	0,92 l/obr.
Jednostki przepływu	obr./min
Etykieta pompy	WATSON-MARLOW
Numer zasobu	NONE
Wartość SG	1
Blokada klawiatury	Nieaktywne

tab. 8 - Ustawienia domyślne dla pierwszego uruchomienia

tab. 8 - Ustawienia domyślne dla pierwszego uruchomienia

Parametr	Domyślnie 730
Ochrona kodem PIN	Nie ustawiony
Sygnał dźwiękowy klawiatury	WŁ.
Wprowadzanie kodu PIN podczas uruchamiania	WŁ.
Poziom wejścia zdalnego uruchamiania/zatrzymywania	Wysoki = stop
Wejście wykrywacza nieszczelności	Wysoki = wyciek
Dostosowanie dawki	-
Wznowienie po przerwaniu	

Pompa jest gotowa do działania zgodnie z podanymi powyżej ustawieniami domyślnymi.

Uwaga: kolor tła wyświetlacza zmienia się w następujący sposób w zależności od stanu działania:

- Białe tło oznacza zatrzymaną pompę
- Szare tło oznacza działającą pompę
- Czerwone tło oznacza błąd lub alarm.

Wszystkie parametry robocze można zmieniać za pomocą klawiszy (patrz rozdział "Obsługa pompy" on page19).

14 Włączanie pompy w kolejnych cyklach zasilania

Jeśli funkcja Automatycznego Wznawiania Pracy jest włączona, pompa może zostać włączona natychmiast po przywróceniu zasilania.

Automatyczne Wznawiania Pracy ma wpływ tylko na pracę w trybie ręcznym i trybie EtherNet/IP™.

Jeśli Automatyczne Wznawianie Pracy, na ekranie jest wyświetlony symbol "!", ostrzegający użytkowników o możliwości zadziałania pompy bez żadnej ręcznej interwencji (pompa wznawia działanie z wcześniejszymi ustawieniami).

Funkcji Automatycznego Wznawiania Prac nie można używać częściej niż:

1 uruchomienie zasilania sieciowego na 2 godziny

Gdy wymagana jest bardzo duża liczba uruchomień, zaleca się zdalne sterowanie.

Jeżeli pompa jest skonfigurowana do pracy w trybie EtherNet/IP[™], będzie reagowała na zdalne polecenia w dowolnym momencie, w tym natychmiast po włączeniu zasilania. Pompa może pracować bez żadnej ręcznej interwencji (np. zdalna wartość zadana może uruchomić pompę bez konieczności naciskania klawiszy).

W sekwencji działań po włączeniu zasilania następuje przeskok z ekranu startowego do ekranu głównego.

- Pompa realizuje test rozruchowy w celu weryfikacji, czy pamięć i sprzęt działają prawidłowo. W razie wykrycia usterki wyświetlony zostaje kod błędu.
- Pompa przez trzy sekundy wyświetla ekran startowy z logo firmy Watson-Marlow Pumps, a następnie przechodzi do ekranu domowego
- Uruchomieniowe wartości domyślne są takie same jak w chwili, gdy pompa została ostatnim razem wyłączona

Należy sprawdzić, czy ustawienia pompy są odpowiednie do wymaganej pracy. Pompa jest teraz gotowa do pracy.

Wszystkie parametry robocze można zmieniać za pomocą klawiszy (patrz rozdział "Obsługa pompy" on page19).

Przerwa w zasilaniu

Ta pompa posiada funkcję **Automatycznego Wznawiania Pracy** (działa tylko w trybie **Ręcznym**) który, gdy jest aktywny, przywraca pompę do stanu pracy, w jakim znajdowała się w chwili utraty zasilania.

Cykle włączania/wyłączania zasilania

Nie należy włączać/wyłączać pompy częściej niż 12 razy w ciągu 24 godzin, ręcznie lub za pomocą funkcji **Automatycznego Wznawiania Pracy** (działa tylko w trybie **Ręcznym**). Gdy wymagane są bardzo częste cykle zatrzymywania/uruchamiania, zaleca się zdalne sterowanie.

15 Menu główne

1. Aby przejść do **MENU GŁÓWNEGO**, naciśnij przycisk **MENU** ma jednym z ekranów **HOME** lub **INFO**.

- 2. Zostanie wyświetlone **MENU GŁÓWNE**, jak pokazano poniżej. Za pomocą przycisków **r** /**v** przenieś pasek wyboru pomiędzy dostępnymi opcjami.
- 3. Aby wybrać opcję, należy nacisnąć przycisk **SELECT** .

4. Aby powrócić do ekranu, z którego wywołane było MENU, należy nacisnąć przycisk **EXIT**.

15.1 Ustawienia zabezpieczeń

Ustawienia zabezpieczeń można zmienić, wybierając z menu głównego opcję **SECURITY SETTINGS**.

Automatyczna blokada klawiatury

 Naciśnij przycisk ENABLE/ DISABLE, aby włączyć lub wyłączyć funkcję automatycznej blokady klawiatury. Gdy funkcja ta jest włączona, klawiatura zostanie zablokowana po 20 sekundach bezczynności.

 Do czasu wciśnięcia jakiegokolwiek przycisku będzie wyświetlany ekran pokazany poniżej. Aby odblokować klawiaturę, należy wcisnąć równocześnie oba przyciski UNLOCK

KEYPAD LOCKED		WATSON
Press both U simultaneou keypad	NLOCK keys sly to enable control	MARLOW
	UNLOCK	TODE
		MAX
	KEYPAD LOCKED Press both U simultaneou keypad UNLOCK	KEYPAD LOCKED Press both UNLOCK keys simultaneously to enable keypad control UNLOCK UNLOCK UNLOCK

 Na ekranie głównym trybu roboczego wyświetla się ikona kłódki wskazująca, że włączona jest blokada klawiatury.

4. Należy pamiętać o tym, że przycisk **STOP** działa zawsze, niezależnie od tego, czy klawiatura jest zablokowana czy też nie.

Ochrona kodem PIN

Za pomocą przycisków **A** /v wybierz opcję **Zabezpieczenie kodem PIN** w menu **SECURITY SETTINGS** i naciśnij **ENABLE/DISABLE**, aby włączyć lub wyłączyć zabezpieczenie kodem PIN. Jeśli włączono ochronę za pomocą kodu PIN, to do jej wyłączenia wymagane jest działanie z poziomu Master PIN.

Ustawianie kodu Master PIN

Kod PIN zostanie uaktywniony po upływie jednej minuty od ostatniego wprowadzenia kodu PIN.

Ustawienie kodu Master PIN zabezpiecza wszystkie funkcje. Master (administrator) ma możliwość selektywnego włączania funkcjonalności dla dwóch dodatkowych operatorów. W systemie są oni zdefiniowani jako User 1 (użytkownik 1) i User 2 (użytkownik 2). Będą oni mogli uzyskać dostęp do niniejszej funkcjonalności, wprowadzając kod PIN przypisany im przez użytkownika Master.

1. Aby ustawić kod Master PIN, należy przejść do **poziomu Master** i nacisnąć przycisk **ENABLE**.

 Aby zdefiniować czterocyfrowy kod PIN administratora, należy za pomocą przycisków
 wybrać każdą cyfrę z zakresu od 0 do 9. Po wybraniu właściwej cyfry naciśnij przycisk NEXT DIGIT. Po wybraniu czwartej cyfry naciśnij przycisk ENTER.

 Następnie należy nacisnąć przycisk CONFIRM w celu sprawdzenia, czy wprowadzona liczba jest wymaganym kodem PIN. Naciśnij przycisk CHANGE, aby powrócić do wprowadzania kodu PIN.

4. Zostanie wyświetlony poniższy ekran w celu wskazania, że użyto kodu Master PIN umożliwiającego dostęp do wszystkich funkcjonalności. Nacisnąć przycisk **NEXT**, aby selektywnie umożliwić dostęp do funkcji dla Użytkownika 1 i Użytkownika 2.

<	PIN PROTECTION You now have PIN PROTECTION on al functionality. Enab functionality access and User 2 as requ	ll Je Is for User 1 Ired.	WATSON MARLOW
Control of the	NEXT	BACK	MODE

Konfigurowanie ustawień ochrony dla użytkownika 1

 Na wyświetlanym ekranie PIN PROTECTION, gdzie podświetlony jest User 1, naciśnij przycisk ENABLE, aby skonfigurować ustawienia zabezpieczeń użytkownika 1 lub przewiń, aby skonfigurować alternatywnego użytkownika.

2. WŁĄCZENIE ustawień ochrony użytkownika 1 powoduje wyświetlenie ekranu wprowadzania kodu PIN użytkownika 1. Aby zdefiniować czterocyfrowy kod PIN użytkownika 1, należy za pomocą przycisków ∧ /v wybrać każdą cyfrę z zakresu od 0 do 9. Po wybraniu właściwej cyfry naciśnij przycisk NEXT DIGIT. Po wybraniu czwartej cyfry naciśnij przycisk ENTER.

л ⊘	SECURITY SETTINGS Enter new 4 digit User 1	PIN:	WATSON MARLOW
	User 1 PIN will be requir to change selected settin ENTER	EVCK	MODE

 Następnie należy nacisnąć przycisk CONFIRM w celu sprawdzenia, czy wprowadzona liczba jest wymaganym kodem PIN. Naciśnij przycisk CHANGE, aby powrócić do wprowadzania kodu PIN.

4. Aby zdefiniować dozwoloną funkcjonalność, użyj przycisków /v, aby wybrać funkcjonalność i naciśnij przycisk ENABLE. Kod PIN użytkownika 1 umożliwi dostęp tylko do włączonej funkcji; aby wyłączyć funkcję, należy podświetlić włączoną funkcję i nacisnąć przycisk DISABLE. Po włączeniu wszystkich wymaganych funkcji naciśnij przycisk FINISH.

Konfigurowanie ustawień ochrony dla użytkownika 2

 Na wyświetlanym ekranie PIN PROTECTION LEVEL, gdzie podświetlony jest User 2, naciśnij przycisk ENABLE, aby skonfigurować ustawienia zabezpieczeń użytkownika 2 lub przewiń, aby skonfigurować alternatywnego użytkownika.

2. Włączenie ustawień ochrony użytkownika 2 powoduje wyświetlenie ekranu wprowadzania kodu PIN użytkownika 2. Aby zdefiniować czterocyfrowy kod PIN użytkownika 2, należy za pomocą przycisków A /v wybrać każdą cyfrę z zakresu od 0 do 9. Po wybraniu właściwej cyfry naciśnij przycisk **NEXT DIGIT**. Po wybraniu czwartej cyfry naciśnij przycisk **ENTER**.

л 💿	SECURITY SETTINGS Enter new 4 digit User 2 PIN:	WATSON MARLOW
	User 2 PIN will be required to change selected settings BACK	MODE

3. Aby zdefiniować dozwoloną funkcjonalność, użyj przycisków ∧ / ∨ , aby wybrać funkcjonalność i naciśnij przycisk ENABLE. Kod PIN użytkownika 2 umożliwi dostęp tylko do włączonej funkcji; aby wyłączyć funkcję, należy podświetlić włączoną funkcję i nacisnąć przycisk DISABLE. Po włączeniu wszystkich wymaganych funkcji naciśnij przycisk FINISH.

Uwaga: Jeśli ustawienie ochrony dla użytkownika 1 i użytkownika 2 było wprowadzone przez administratora, tylko kod Master PIN umożliwia dostęp do ustawień zabezpieczeń.

4. Zostanie wyświetlony ekran HOME . Od tego momentu uzyskanie dostępu do jakiejkolwiek funkcji wymaga wpisania kodu PIN. Kod Master PIN daje dostęp do wszystkich funkcji pompy, a PIN użytkownika 1 i PIN użytkownika 2 dają dostęp tylko do określonych funkcji. Aby wprowadzić kod PIN, wybierz każdą cyfrę z zakresu od 0 do 9 za pomocą przycisków ∧ /v. Po wybraniu właściwej cyfry naciśnij przycisk NEXT DIGIT. Po wybraniu czwartej cyfry naciśnij przycisk ENTER.

 W przypadku wprowadzenia nieprawidłowego kodu PIN wyświetlony zostanie następujący ekran. UWAGA: Ekran ten zostanie wyświetlony również wtedy, gdy wprowadzony PIN nie daje dostępu do określonej funkcji.

 Jeśli wprowadzony PIN jest już w użyciu, zostanie wyświetlony poniższy ekran. Należy wtedy nacisnąć przycisk CHANGE, aby wprowadzić alternatywny kod PIN lub EXIT w celu przerwania procesu.

7. Jeśli wprowadzony kod PIN nie daje dostępu do funkcji, zostanie wyświetlony poniższy ekran.

Sygnał dźwiękowy klawiatury

 W ustawieniach SECURITY przewiń do opcji Sygnał dźwiękowy klawiatury za pomocą przycisków A /v i wybierz ENABLE. Pompa będzie teraz emitować sygnał dźwiękowy przy każdym naciśnięciu klawisza.

Λ.®	SECURITY SETTINGS Keypad lock X PIN protection Keypad Beep PIN entry on start-up	(WATSON MARLOW
		MODE
		MAX

Wprowadzanie kodu PIN podczas uruchamiania

Ustawienie **Wprowadzanie kodu PIN podczas uruchamiania** umożliwia skonfigurowanie oprogramowania żądania wprowadzenia kodu PIN podczas uruchamiania.

Ta funkcja oznacza także, że funkcja **Automatycznego Wznawiania Pracy** jest obecnie niezależna od wprowadzenia kodu PIN po uruchomieniu.

Jeśli to ustawienie jest aktywne ✓, pompa będzie żądała wprowadzenia kodu PIN przed przejściem do ekranu głównego sterowania po włączeniu zasilania.

Jeśli to ustawienie jest nieaktywne ×, pompa nie będzie żądała wprowadzenia kodu PIN przed przejściem do ekranu głównego sterowania po włączeniu zasilania.

Reakcja pompy na **Automatyczne Wznawianie Pracy** po włączeniu zasilania jest obecnie niezależna od wprowadzenia kodu PIN.

Domyślnie to ustawienie jest aktywne ✓, czyli kod PIN będzie wymagany po włączeniu zasilania przed przejściem do ekranu głównego sterowania.

Dezaktywowanie tej funkcji nie zmienia innych aspektów działania kodu PIN. W celu zmodyfikowania ustawień pompy nadal będzie wymagane wprowadzenie kodu PIN.

15.2 Ustawienia ogólne

Aby wyświetlić menu ustawień ogólnych, w menu głównym należy wybrać opcję GENERAL SETTINGS

Automatyczne wznawiania pracy

Pompa wyposażona jest w funkcję **Automatycznego Wznawiania Pracy**. To ustawienie obowiązuje tylko w trybie**Ręcznym**.

Jeśli pompa pracuje w trybie ręcznym i funkcja jest aktywna (skonfigurowano wartość **tak**), pompa będzie inaczej reagowała na włączenie zasilania.

Jeśli **Automatyczne Wznawianie Pracy** jest aktywne, pompa będzie zapamiętywała bieżące ustawienia robocze w momencie utraty zasilania i odtwarzała je, gdy tylko zasilanie zostanie przywrócone.

! jest ponadto wyświetlany, gdy **Automatyczne Wznawianie Pracy** jest aktywne, aby ostrzec użytkowników przed możliwością nieoczekiwanego zadziałania pompy.

 Naciśnij przycisk ENABLE / DISABLE , aby włączyć lub wyłączyć funkcję Automatyczne Wznawianie Pracy (działa tylko w trybie Ręcznym).

Nie należy używać funkcji automatycznego wznawiania pracy więcej niż 12 razy w ciągu 24 godzin. Gdy wymagana jest bardzo duża liczba uruchomień, zaleca się zdalne sterowanie.

Jeśli funkcja Automatycznego Wznawiania Pracy jest włączona, pompa może zostać włączona natychmiast po przywróceniu zasilania.

Automatyczne Wznawiania Pracy ma wpływ tylko na pracę w trybie ręcznym i trybie EtherNet/IP™.

Jeśli Automatyczne Wznawianie Pracy, na ekranie jest wyświetlony symbol "!", ostrzegający użytkowników o możliwości zadziałania pompy bez żadnej ręcznej interwencji (pompa wznawia działanie z wcześniejszymi ustawieniami).

Funkcji Automatycznego Wznawiania Prac nie można używać częściej niż:

1 uruchomienie zasilania sieciowego na 2 godziny

Gdy wymagana jest bardzo duża liczba uruchomień, zaleca się zdalne sterowanie.

Jeżeli pompa jest skonfigurowana do pracy w trybie EtherNet/IP[™], będzie reagowała na zdalne polecenia w dowolnym momencie, w tym natychmiast po włączeniu zasilania. Pompa może pracować bez żadnej ręcznej interwencji (np. zdalna wartość zadana może uruchomić pompę bez konieczności naciskania klawiszy).

Jednostki przepływu

Po prawej stronie ekranu wyświetlana jest wybrana jednostka przepływu. Aby zmienić jednostki przepływu, należy przesunąć pasek wyboru przez menu jednostek przepływu i nacisnąć przycisk **SELECT**.

 Za pomocą przycisków A /v przenieś pasek wyboru nad żądaną jednostkę przepływu, a następnie naciśnij przycisk SELECT. Wszystkie natężenia przepływu wyświetlane na ekranie będą teraz wyświetlane w wybranych jednostkach.

 Jeśli wybrano masowe natężenie przepływu, należy wprowadzić ciężar właściwy płynu. Wyświetlony zostanie następujący ekran.

 Za pomocą przycisków /v przejdź do wartości ciężaru właściwego i naciśnij przycisk SELECT.

Etykieta pompy

Etykieta pompy to zdefiniowana przez użytkownika 20-cyfrowa alfanumeryczna etykieta, która jest wyświetlana w nagłówku ekranu głównego. Aby zdefiniować lub edytować etykietę pompy, należy przesunąć pasek wyboru nad menu etykiety pompy i nacisnąć przycisk **SELECT**. Jeśli etykieta pompy została już wcześniej zdefiniowana, będzie wyświetlana na ekranie i będzie można ją edytować; jeśli nie ma takiej etykiety, wyświetlana jest etykieta domyślna "WATSON-MARLOW".

 Za pomocą przycisków x /v przewiń dostępne znaki dla każdej cyfry. Dostępne znaki to 0–9, A–Z i spacja.

 Aby przejść do następnego znaku, nacisnąć przycisk NEXT ; aby powrócić do poprzedniego znaku, nacisnąć przycisk PREVIOUS.

 Naciśnij przycisk FINISH, aby zapisać wprowadzone dane i powrócić do menu ustawień ogólnych.

Numer zasobu

Numer zasobu służy do ustawiania przez użytkowników unikalnego kodu identyfikacyjnego zasobów dla pompy. Może to pomóc w śledzeniu pracy pomp w sieci i odróżnianiu poszczególnych pomp. Nie ma domyślnego ustawienia fabrycznego dla tego parametru, a nowe pompy są dostarczane bez numeru zasobu.

Ustawianie numeru zasobu

 W manu głównym za pomocą przycisków A / v przejdź do Ustawień ogólnych i naciśnij SELECT.

2. Za pomocą przycisków **^ / v** przejdź do **Nuemru zasobu** i naciśnij **SELECT.**

Use //v keys to select	GENERAL SETTINGS Define asset number for pump:	WATSON MARLOW
Characters (20max)	Use ^/v keys to select characters (20max)	MODE C

3. Wprowadź znak za pomocą przycisków 🔨 / 🗸.

(\mathbf{A})	GENERAL SETTINGS Define asset number for pump:	WATSON MARLOW
$\overline{\mathbf{v}}$	Use ^/v keys to select characters (20max)	
		MODE
		MAX

 Do dyspozycji jest 20 miejsc na znaki. Naciśnij przycisk NEXT, aby potwierdzić znak i przejść do następnego. Naciśnij przycisk PREVIOUS, aby powrócić do ostatniego miejsca na znaki.

5. Po wypełnieniu miejsc na znaki naciśnij przycisk **FINISH**. Spowoduje to powrót do ekranu **USTAWIENIA OGÓLNE**.

$\overline{\wedge}$	GENERAL SETTINGS Define asset number for pump:	WATSON MARLOW
$\overline{\mathbf{v}}$	Use ^/v keys to select characters (20max)	
٠ ا	Previous Finish	
		MODE
		MAX

6. Wyłączyć i ponownie włączyć pompę, aby wprowadzić numer zasobu.

Prędkość bezpieczna

Prędkość bezpieczna to dedykowana prędkość, którą pompa wykorzystuje w przypadku wystąpienia błędu. Należy jej użyć, aby zapobiec zatrzymaniu pompy w przypadku wystąpienia błędu.

Przykład: odłączyć kabel RJ45 od pompy podczas pracy w trybie EtherNet/IP[™], a wystąpi błąd pompy.

- Jeżeli włączona jest prędkość bezpieczna, pompa będzie pracować z prędkością bezpieczną i zostanie wyświetlony komunikat o błędzie sieci.
- Jeżeli prędkość bezpieczna nie jest włączona, pompa przestanie pracować i zostanie wyświetlony komunikat o błędzie sieci.

Po potwierdzeniu błędu pompa będzie pracować normalnie.

Typ głowicy pompy

1. Wybierz **GENERAL SETTINGS** z menu głównego.

2. Za pomocą przycisków **^ /v** przenieś pasek wyboru nad **Typ głowicy pompy** i naciśnij przycisk **SELECT**. Wyświetlony zostanie następujący ekran.

3. Za pomocą przycisków A /v przenieś pasek wyboru nad **Głowicę pompy** i naciśnij przycisk **SELECT**.

 Za pomocą przycisków ∧ /v przenieś pasek wyboru nad wymagany typ głowicy pompy i naciśnij przycisk SELECT.

Rozmiar i materiał węża

 Wybierz Rozmiar węża w menu GENERAL SETTINGS, a następnie za pomocą przycisków A /v przenieś pasek wyboru nad Średnicę wewnętrzną i naciśnij przycisk SELECT.

 Za pomocą przycisków
 /v przenieś pasek wyboru nad rozmiar węża, która ma zostać użyta i naciśnij przycisk SELECT.

TUBE SIZE Select tube size (wa 0.8mm 0.19mm 0.8mm 0.29mm 0.8mm 0.38mm 0.8mm 0.50mm 0.8mm 0.50mm	all, bore):	WATSON MARLOW
SELECT	BACK	MODE MAX

 W przypadku wybrania elementu LoadSure, rozmiar węża jest wyświetlany parametrami ciśnienia i otworu.

4. Niniejszy ekran umożliwia również wybranie stosowanego materiału węża. Za pomocą przycisków A /v przenieś pasek wyboru nad **Materiał węża** i naciśnij przycisk **SELECT**.

 Za pomocą przycisków A /v przenieś pasek wyboru nad materiał rury, który ma zostać użyty i naciśnij przycisk SELECT.

- Ekran PUMPHEAD MODEL umożliwia zachowanie numer partii węża w celu późniejszego wykorzystania. Za pomocą przycisków
 ry przejdź do opcji Numer partii węża i naciśnij SELECT.
- Za pomocą przycisków
 /v przewiń dostępne znaki dla każdej cyfry. Dostępne znaki to 0–9, A–Z i spacja.
- 8. Aby przejść do następnego znaku, nacisnąć przycisk **NEXT** ; aby powrócić do poprzedniego znaku, nacisnąć przycisk **PREVIOUS**

 Naciśnij przycisk FINISH, aby zapisać wprowadzone dane i powrócić do menu ustawień ogólnych.

Przywracanie ustawień fabrycznych

- 1. Aby przywrócić domyślne ustawienia fabryczne, należy wybrać opcję **Przywracanie** ustawień fabrycznych w menu USTAWIENIA OGÓLNE.
- 2. Są dwa ekrany potwierdzeń służące do zapewnienia, że ta funkcja nie jest wybrana błędnie.

3. Aby przywrócić ustawienia fabryczne, należy nacisnąć przycisk **CONFIRM** i **RE-CONFIRM**.

Język

 W menu USTAWIENIA OGÓLNE można wybrać język, w którym będą wyświetlane informacje dotyczące pompy. Przed przystąpieniem do wyboru języka należy zatrzymać pompę. 2. Za pomocą przycisków **^ /v** przejdź do żądanego języka. Naciśnij przycisk **SELECT** , aby potwierdzić.

- Wybrany język zostanie wyświetlony na ekranie. Naciśnij przycisk CONFIRM , aby kontynuować; wszystkie teksty będą teraz wyświetlane w wybranym języku.
- 4. Aby powrócić do ekranu wyboru języka, naciśnij przycisk **REJECT**.

15.3 Zmień tryb

Wybranie menu **CHANGE MODE** z głównego menu umożliwia przejście do podmenu pokazanych poniżej. Ten sam efekt można uzyskać, naciskając przycisk **MODE** Dalsze szczegóły, patrz "Menu trybu" on page72.

15.4 Ustawienia sterowania

 Aby przejść do przedstawionego poniżej menu podrzędnego, należy wybrać opcjęCONTROL SETTINGS w MENU GŁÓWNYM. Za pomocą przycisków A /v przenieś pasek wyboru. Aby wybrać żądaną funkcję, nacisnąć przycisk SELECT.

Ograniczenie prędkości

Maksymalna prędkość obrotowa, z jaką może pracować pompa, wynosi 360 obr./min.

1. Aby określić najniższą prędkość maksymalną pompy, należy wybrać opcję **graniczenie prędkości** w menu **USTAWIENIA STEROWANIA**.

To ograniczenie prędkości będzie zastosowane do wszystkich trybów pracy.

2. Za pomocą przycisków 🔨 🗸 dostosuj wartość i naciśnij przycisk SAVE , aby ustawić.

Zerowanie licznika godzin pracy

- 1. Wybierz opcję Reset godzin pracy w menu USTAWIENIA STEROWANIA.
- Aby wyzerować licznik godzin pracy, wybrać przycisk RESET. Dostęp do licznika godzin pracy można uzyskać, naciskając przycisk INFO na ekranie głównym. Wyświetlony zostanie następujący ekran. Naciśnij przycisk RESET, aby zresetować godziny pracy lub przycisk CANCEL, aby powrócić do menu CONTROL SETTINGS.

15.5 Pomoc

Pomoc

1. Aby przejść do ekranów pomocy, należy w menu głównym wybrać opcję HELP (Pomoc).

SOFTWARE VERSIONS	BOOTLOADER VERSIONS	
Main Processor Code: 1.2 HMI Processor Code: 1.2 HMI Screen Resources: 1.2 RRCARU JS Processor GorGade: 1.2	Main Processor Code: 1.2 HMI Processor Code: 1.2	
BOOTLOADER BACK	BACK	

16 Menu trybu

- 1. Naciśnij przycisk **MODE**, aby wyświetlić menu **ZMIANA TRYBU**.
- 2. Za pomocą przycisków **^ / v** przewijaj dostępne tryby.
- Ręczny (domyślny)
- Kalibracja Przepływu
- EtherNet/IP™
- BACK
- Wybrać tryb za pomocą przycisku SELECT . Aby zmienić ustawienia trybu, należy użyć prawego przycisku funkcyjnego.

17 Tryb ręczny

W trybie **Ręcznym** wszystkie ustawienia i funkcje pompy są ustawiane i sterowane za pomocą przycisków. Natychmiast po uruchomieniu wyświetlana jest sekwencja objaśniona w sekcji: "Włączanie pompy w kolejnych cyklach zasilania" on page44, wyświetlony zostanie ekran główny trybu **Ręcznego**, chyba że włączona jest funkcja **Automatyczne Wznawianie Pracy**.

Jeśli **Automatyczne Wznawianie Pracy** jest aktywne odtwarza ostatnie znane ustawienia w tym trybie pracy, gdy zasilanie zostanie ponownie doprowadzone. Gdy pompa pracuje, wyświetlana jest animowana strzałka, poruszająca się zgodnie z ruchem wskazówek zegara. W czasie normalnej pracy medium wpływa do dolnego króćca głowicy pompy i wypływa górnym króćcem.

Jeśli wyświetlany jest wykrzyknik (!), pompa może zostać automatycznie ponownie uruchomiona w dowolnym momencie. W trybie **Ręcznym** zachowanie funkcji **Automatycznego Wznawiania Pracy** jest konfigurowalne. Jeśli wyświetla się ikona kłódki, oznacza to, że włączona jest blokada klawiatury.

17.1 Uruchomienie

1. Uruchomienie pompy powoduje zmianę koloru tła wyświetlacza na szary. Gdy pompa już pracuje, przycisk nie działa.

17.2 Zatrzymanie

1. Zatrzymywanie pompy. Tło wyświetlacza zmienia kolor na biały. Naciskanie na przycisk, gdy pompa nie pracuje, nie daje żadnego skutku.

17.3 Zwiększanie i zmniejszanie natężenia przepływu

1. Za pomocą przycisków **^ / v** zwiększ lub zmniejsz natężenie przepływu.

Zmniejszanie natężenia przepływu

- Jednokrotne naciśnięcie przycisku powoduje zmniejszenie ustawionego natężenia przepływu, począwszy od cyfry mniej znaczącej.
- Naciskać przycisk aż do uzyskania wymaganego natężenia przepływu.
- Naciśnięcie i przytrzymanie przycisku powoduje przewijanie natężenia przepływu.

Zwiększanie natężenia przepływu

- Jednokrotne naciśnięcie przycisku powoduje zwiększenie ustawionego natężenia przepływu, począwszy od cyfry mniej znaczącej.
- Naciskać przycisk aż do uzyskania wymaganego natężenia przepływu.
- Naciśnięcie i przytrzymanie przycisku powoduje przewijanie natężenia przepływu.

MAX FUNCTION (tylko tryb Ręczny)

1. Za pomocą przycisku MAX:

- Aby uzyskać maksymalne natężenie przepływu pompy, należy nacisnąć i przytrzymać przycisk MAX.
- Zwolnienie przycisku powoduje zatrzymanie pompy.
- Po naciśnięciu i przytrzymaniu przycisku MAX wyświetlana jest dozowana objętość i czas trwania.

18 Kalibracja przepływu

Na wyświetlaczu tej pompy natężenie przepływu podawane jest w ml/min.

18.1 Ustawianie kalibracji przepływu

1. Za pomocą przycisków **^ /v** przejdź do opcji**Kalibracja przepływu** i naciśnij **CALIBRATE**.

 Za pomocą przycisków
Iv wprowadź limit maksymalnego natężenia przepływu i naciśnij ENTER.

 Nacisnąć przycisk START , aby rozpocząć pompowanie pewnej objętości płynu na potrzeby kalibracji.

4. Nacisnąć przycisk **STOP**, aby zatrzymać pompowanie płynu na potrzeby kalibracji.

5. Za pomocą przycisków **^ /v** wprowadź rzeczywistą objętość pompowanego płynu.

6. Nacisnąć przycisk **ACCEPT**, aby zaakceptować nową kalibrację albo przycisk **RE-CALIBRATE**, aby powtórzyć procedurę. Naciśnij przycisk **HOME** lub **MODE**, aby przerwać.

7. Pompa jest teraz skalibrowana.

19 Tryb EtherNet/IP[™]

19.1 Konfigurowanie ustawień EtherNet/IP[™]

Ustawienia należy skonfigurować, tak aby umożliwiały połączenie z daną siecią. Przykładowe statyczne adresy IP są następujące:

tab. 9 - Konfigurowanie ustawień EtherNet/IP™					
Ustawienie	Wartość				
Aktywny protokół DHCP	Wył.				
Adres IP	192.168.001.012				
Maska podsieci	255.255.255.000				
Adres bramy sieciowej	192.168.001.001				

1. Naciśnij przycisk **MODE**, aby przejść do menu **MODE**.

2. Za pomocą przycisków ∧ / ∨ wybierz EtherNet/IP[™].

3. Naciśnij przycisk **SELECT** , aby użyć trybu**EtherNet/IP**[™] .

4. Naciśnij przycisk SETTINGS, aby przejść do menuETHERNET/IP™ SETTINGS .

Ustawienie Aktywny protokół DHCP

1. Naciśnij przycisk **DISABLE**, aby przestawić opcję**DHCP Enable** na **Off (Wyłączone)**.

Ustawianie adresu IP, maski podsieci i adresu bramy sieciowej

Skonfigurować kolejno adres IP, maskę podsieci i adres bramy sieciowej przy użyciu następującej metody:

1. Za pomocą przycisków x / v wybierz ustawienie do skonfigurowania. Naciśnij przycisk **SET** , aby przejść do menu**SET ADDRESS** .

2. Za pomocą przycisków 🔥 / vustaw pierwszy numer. Przytrzymaj przycisk 🔥 / v, aby zwiększyć szybkość przewijania. Naciśnij przycisk **NEXT**, aby przejść do następnej liczby.

- Po ustawieniu ostatniego numeru naciśnij przycisk CONFIRM , aby zapisać numer i powrócić do ekranu ETHERNET/IP™ SETTINGS.
- 4. Naciśnij przycisk **BACK**, aby wrócić do menu **MODE**.

19.2 Tryb EtherNet/IP[™]

1. W menu CHANGE MODE podświetl EtherNet/IP[™] i naciśnij przycisk SELECT , aby użyć trybu EtherNet/IP[™].

 Jeśli pompa nie jest podłączona do komputera, na wyświetlaczu pompy wyświetlony zostanie błąd sieci w formie przedstawionej na ilustracji.

 Jeżeli pompa jest podłączona do komputera, naciśnij przycisk INFO, aby wyświetlić ustawienia sieci.

19.3 Parametry pompy

Ustawianie parametrów

Aby ustawić nową wartość parametru:

- Wpisać wartość w polu lub kliknąć pole wyboru (zależnie od typu parametru).
- Kliknij przycisk set, aby zapisać nową wartość lub przycisk refresh, aby anulować zmianę.
- Na jednej stronie może być wyświetlonych maksymalnie 100 parametrów. Do przewijania stron służą przyciski < i >

tab. 10 - Parametry cykliczne	
-------------------------------	--

Indeks	Nazwa	Dostęp	Rodzaj	Opis
1	SetFlowCal	Zapis	UInt32	Ustawić wartość kalibracji przepływu (µL/obr)
2	SetSpeed	Zapis	UInt16	Prędkość jest wyznaczana w 1/10 obr./min. Maks. prędkość zależy od typu głowicy. Patrz tabela wyliczeń głowicy pompy
3	SetSpeedLimit	Zapis	UInt16	Prędkość jest wyznaczana w 1/10 obr./min. Maks. prędkość zależy od typu głowicy. Patrz tabela głowic pomp poniżej.
4	SetFailsafeSpeed	Zapis	UInt16	Jeśli jest uaktywniony tryb awaryjny, w przypadku utraty łączności pompa będzie pracować nieprzerwanie z wybraną prędkością.
5	SetFailsafeEnable	Zapis	Bool	Uaktywnienie prędkości w trybie awaryjnym. Jeśli ten tryb jest nieaktywny, w przypadku utraty łączności pompa zostanie zatrzymana. Jeśli jest uaktywniony, pompa będzie pracować z prędkością ustawioną w parametrze "SetFailsafeSpeed"
6	SetReverse	Zapis	Bool	Jeśli jest ustawione, pompa obraca się w kierunku przeciwnym do ruchu wskazówek zegara. Domyślnie pompa pracuje zgodnie z kierunkiem ruchu wskazówek zegara
7	Praca	Zapis	Bool	Ustawienie wartości 1(tak) oznacza, że pompa może pracować. 0 powoduje zatrzymanie pompy. Uaktywnienie pompy musi zostać ustawione
8	RunEnable	Zapis	Bool	Ustawienie musi wynosić 1, aby pompa mogła pracować. Ustawienie wartości 0 powoduje zatrzymanie pompy i brak możliwości jej uruchomienia.

tab. 10 - Parametry cykliczne

Indeks	Nazwa	Dostęp	Rodzaj	Opis
9	ResetRunHours	Zapis	Bool	Zerowanie licznika godzin pracy
10	PauseFlowTotaliser	Zapis	Bool	Ustawienie wartości 1 powoduje wstrzymanie wewnętrznego parametru FlowTotaliser. Ustawienie wartości 0 powoduje anulowanie wstrzymania parametru
11	ResetFlowTotaliser	Zapis	Bool	Ustawienie wartości 1 powoduje wyzerowanie sumatora przepływu. Ustawienie wartości 0 umożliwia działanie sumatora przepływu
12	ResetRevolutionCount	Zapis	Bool	Ustawienie wartości 1 powoduje wyzerowanie licznika obrotów. Ustawienie wartości 0 umożliwia zliczanie obrotów.
13	FlowCal	Odczyt	Uint32	Wartość kalibracji przepływu w µL.
14	RunHours	Odczyt	Uint32	Liczba godzin pracy pompy
15	SensorFlowRate	Odczyt	SInt32	Wskazanie wartości, jeśli jest skonfigurowany czujnik przepływu
16	SensorPressure	Odczyt	SInt32	Wskazanie wartości, jeśli jest skonfigurowany czujnik ciśnienia
17	PressureLo- HiWarningSp	Odczyt	SInt32	Wskazanie nastawy poziomu ostrzeżenia niskiego ciśnienia w 1/10 psi
18	PressureHi- LoWarningSp	Odczyt	SInt32	Wskazanie nastawy poziomu ostrzeżenia wysokiego ciśnienia w decyPSI
19	PressureLo-LoAlarmSp	Odczyt	SInt32	Wskazanie nastawy poziomu alarmu niskiego ciśnienia w decyPSI
20	PressureHi-HiAlarmSp	Odczyt	SInt32	Wskazanie nastawy poziomu alarmu wysokiego ciśnienia w decyPSI

tab. 10 - Parametry cykliczne

Indeks	Nazwa	Dostęp	Rodzaj	Opis	
21	FlowSensorLo- HiWarningSp	Odczyt	SInt32	Wskazanie na ostrzeżenia r	astawy poziomu niskiego przepływu w μL
22	FlowSensorHi- LoWarningSp	Odczyt	SInt32	Wskazanie na ostrzeżenia v w μL	astawy poziomu vysokiego przepływu
23	FlowSensorLo- LoAlarmSp	Odczyt	SInt32	Wskazanie na niskiego prze	astawy poziomu alarmu εpływu w μL
24	FlowSensorHi- HiAlarmSp	Odczyt	SInt32	Wskazanie na wysokiego pi	astawy poziomu alarmu rzepływu w μL
25	FlowTotaliser	Odczyt	UInt32	Sumaryczna w 1/10 ml	wartość przepływu
26	RevolutionCount	Odczyt	UInt32	Liczba pełnyc	ch obrotów
27	PumpSpeed	Odczyt	UInt16	Bieżąca nasta 1/10 obr./mii	awa prędkości pompy w n
28	SpeedLimit	Odczyt	UInt16	Bieżąca nasta 1/10 obr./mii	awa limitu prędkości w n
29	GeneralAlarm	Lic Lic Lic Odczyt ^{Lic} Lic Lic	znik bitów (znik bitów (znik bitów (znik bitów (znik bitów (znik bitów (znik bitów ((BitList) (BitList) (BitList) (BitList) (BitList) (BitList) (BitList)	Błąd zgaśnięcia silnika Błąd prędkości silnika Błąd przetężenia Błąd przepięcia Osłona otwarta (tylko w wersjach z włączoną osłoną) Wykryto nieszczelność Przerwanie dozowania Presostat
30	PumpVersionMajor	Odczyt	UInt8	Numer dużeg oprogramow	go wydania wersji /ania pompy
31	PumpVersionMinor	Odczyt	UInt8	Numer małe oprogramow	go wydania wersji vania pompy

tab. 10 -	Parametry cykliczne			
Indeks	Nazwa	Dostęp	Rodzaj	Opis
32	ASIC-VersionMajor	Odczyt	UInt8	Numer dużego wydania wersji oprogramowania Ethernet ASIC
33	ASIC-VersionMinor	Odczyt	UInt8	Numer małego wydania wersji oprogramowania Ethernet ASIC
34	ASIC-VersionBuild	Odczyt	UInt8	Numer wydania kompilacji oprogramowania EtherNet ASIC
35	Grubość ścianki	Odczyt	Enum	Wskazanie bieżącego ustawienia grubości ścianki węża. Tabela numerów grubości ścianek znajduje się poniżej
36	Średnica wewnętrzna	Odczyt	Enum	Wskazanie bieżącego ustawienia wymiaru średnicy wewnętrznej węża. Tabela numerów średnicy wewnętrznej znajduje się poniżej
37	Model pompy	Odczyt	Enum	Wskazanie bieżącego ustawienia modelu pompy. Tabela numerów modelów pompy znajduje się poniżej
38	PumpHead	Odczyt	Enum	Wskazanie wybranego wymiaru głowicy pompy. Tabela numerów głowic pompy znajduje się poniżej
39	Model czujnika ciśnienia	Odczyt	Enum	Wskazanie bieżącego ustawienia modelu czujnika ciśnienia. Tabela numerów modelu czujnika ciśnienia znajduje się poniżej
40	Rozmiar czujnika ciśnienia	Odczyt	Enum	Wskazanie bieżącego ustawienia rozmiaru czujnika ciśnienia. Tabela numerów rozmiaru czujnika ciśnienia znajduje się poniżej
41	Model czujnika przepływu	Odczyt	Enum	Wskazanie bieżącego ustawienia modelu czujnika przepływu. Tabela numerów modelu czujnika przepływu znajduje się poniżej

tab. 10 - Parametry cykliczne

Indeks	Nazwa	Dostęp	Rodzaj	Opis
42	Rozmiar czujnika przepływu	Odczyt	Enum	Wskazanie bieżącego ustawienia wielkości czujnika przepływu. Tabela numerów rozmiaru czujnika przepływu znajduje się poniżej
43	Reverse	Odczyt	Bool	Jest ustawione, jeśli pompa obraca się w kierunku przeciwnym do ruchu wskazówek zegara
44	Running	Odczyt	Bool	Jest ustawione, jeśli pompa pracuje
45	LeakDetected	Odczyt	Bool	Jest ustawione, jeśli zostanie wykryty wyciek
46	MotorStallError	Odczyt	Bool	Jest ustawione, jeśli w pompie zgaśnie silnik. Należy postępować zgodnie z instrukcjami wyświetlanymi na ekranie
47	MotorSpeedError	Odczyt	Bool	Jest ustawione, jeśli w pompie występuje przetężenie. Należy postępować zgodnie z instrukcjami wyświetlanymi na ekranie
48	OverCurrentError	Odczyt	Bool	Jest ustawione, jeśli w pompie występuje przetężenie. Należy postępować zgodnie z instrukcjami wyświetlanymi na ekranie
49	OverVoltageError	Odczyt	Bool	Jest ustawione, jeśli w pompie występuje przepięcie. Należy postępować zgodnie z instrukcjami wyświetlanymi na ekranie
50	Guard/Interlock	Odczyt	Bool	Jest ustawione, jeśli otwarta została osłona. W celu zresetowania błędu należy postępować zgodnie z instrukcjami wyświetlanymi na ekranie.
51	FlowHi-LoActive	Odczyt	Bool	Jest ustawione, jeśli aktywne jest ostrzeżenie o niskim przepływie

tab. 10 -	Parametry cykliczne			
Indeks	Nazwa	Dostęp	Rodzaj	Opis
52	FlowLo-LoActive	Odczyt	Bool	Jest ustawione, jeśli aktywny jest alarm niskiego przepływu
53	PressureHi-LoActive	Odczyt	Bool	Jest ustawione, jeśli aktywne jest ostrzeżenie o niskim ciśnieniu
54	PressureLo-LoActive	Odczyt	Bool	Jest ustawione, jeśli aktywny jest alarm niskiego ciśnienia
55	FlowHi-HiActive	Odczyt	Bool	Jest ustawione, jeśli aktywny jest alarm wysokiego przepływu
56	FlowLo-HiActive	Odczyt	Bool	Jest ustawione, jeśli aktywne jest ostrzeżenie o wysokim przepływie
57	PressureHi-HiActive	Odczyt	Bool	Jest ustawione, jeśli aktywny jest alarm wysokiego ciśnienia
58	PressureLo-HiActive	Odczyt	Bool	Jest ustawione, jeśli aktywne jest ostrzeżenie o wysokim ciśnieniu
59	FlowSensorError	Odczyt	Bool	Jest ustawione, jeśli na wejściu 1 czujnika odbierany jest sygnał o błędzie
60	PressureSensorError	Odczyt	Bool	Jest ustawione, jeśli na wejściu 2 czujnika odbierany jest sygnał o błędzie
61	AnybusNetworkMode	Odczyt	Bool	Jest ustawione, jeśli pompa znajduje się w trybie EtherNet IP
62	AnybusNetworkActive	Odczyt	Bool	Jest ustawione, jeśli w pompie jest aktywna funkcja EtherNet IP
64	ErrorAcknowledge	Zapis	Bool	Służy do potwierdzania błędów przez EtherNet IP
106	PressureSwitchError	Odczyt	Bool	Podaje bieżącą aktywną partię według identyfikatora
200	RPIRange	Odczyt	SInt32	Zgłasza czasy dostępu do danych cyklicznych

tab. 11 -	Parametry	acykliczne
-----------	-----------	------------

Indeks	Nazwa	Dostęp	Rodzaj	Opis
63	Numer zasobu	Odczyt	Char	Po ustawieniu odczyta numer utworzonego zasobu
70	EditRecipeVolume	Zapis	UInt32	Edycja objętości aktywnej receptury ustawionej w μL
71	EditRecipePumpSpeed	Zapis	UInt16	Edycja prędkości dozowania aktywnej receptury ustawionej w decyObr./min
72	EditBatchSize	Zapis	UInt16	Edycja wielkości aktywnej partii (0 ustawia nieograniczoną partię)
73	Edycja opóźnienia rozpoczęcia partii	Zapis	Uint16	Ustawienie opóźnienia czasowego pomiędzy rozpoczęciem partii a pierwszym dozowaniem
74	EditBatchEndDelay	Zapis	UInt16	Ustawienie opóźnienia czasowego pomiędzy ostatnim dozowaniem w partii a zakończeniem partii
75	Edycja opóźnienia rozpoczęcia receptury	Zapis	Uint16	Ustawienie opóźnienia czasowego pomiędzy rozpoczęciem dozowania a uruchomieniem głowicy pompy
76	EditRecipeEndDelay	Zapis	UInt16	Ustawienie opóźnienia czasowego pomiędzy zatrzymaniem głowicy pompy a zakończeniem dozowania
78	EditBatchDispenseDirection	Zapis	UInt8	Ustawienie kierunku pompy wsadowej na przeciwny do ruchu wskazówek zegara, jeśli jest ustawiony

tab. 11 - Parametry acykliczne

Indeks	Nazwa	Dostęp	Rodzaj	Opis
79	EditRecipeAntiDripAmount	Zapis	UInt8	Edycja ilości ograniczenia kapania w recepturze
80	EditBatchName	Zapis	Char	Edycja nazwy aktywnej partii
81	EditRecipeName	Zapis	Char	Edycja nazwy receptury w aktywnej partii
82	ActiveRecipeID	Odczyt	UInt32	Podaje bieżącą aktywną recepturę według identyfikatora
83	ActiveRecipeVolume	Odczyt	UInt32	Podaje aktualną objętość docelową
84	ActiveRecipeFlowRate	Odczyt	UInt32	Podaje aktualne docelowe natężenie przepływu
85	ActiveBatchSize	Odczyt	UInt16	Podaje wielkość aktualnej partii
86	ActiveBatchStartDelay	Odczyt	UInt16	Podaje opóźnienie rozpoczęcia aktualnej partii
87	ActiveBatchEndDelay	Odczyt	UInt16	Podaje opóźnienie zakończenia aktualnej partii
88	ActiveRecipeStartDelay	Odczyt	UInt16	Podaje opóźnienie rozpoczęcia aktualnej receptury
89	ActiveRecipeEndDelay	Odczyt	UInt16	Podaje opóźnienie zakończenia aktualnej receptury
90	CurrentDispenseDoseDelivered	Odczyt	UInt16	Podaje aktualną liczbę dostarczonych dawek
92	ActiveRecipeAntiDripAmount	Odczyt	UInt8	Podaje aktualną ilość ograniczenia kapania
93	CurrentDispenseDoseAdjustmentPercent age	Odczyt	UInt8	Podaje aktualną wartość dostosowania dawki

tab. 11 - Parametry acykliczne						
Indeks	Nazwa	Dostęp	Rodzaj	Opis		
94	ActiveBatchName	Odczyt	Char	Odczyt nazw partii	y aktywnej	
95	ActiveRecipeName	Odczyt	Char	Odczyt nazw receptury	y aktywnej	
			Licznik bitów (BitList)		Identyfikator aktywnej partii jest nieprawidło wy, jeżeli ustawiony identyfikator aktywnej partii jest nieprawidło wy	
			Licznil (< bitów BitList)	Identyfikator aktywnej receptury jest nieprawidło wy, jeżeli	
104	DispenseBitField	Odczyt	UInt8		ustawiony identyfikator aktywnej receptury jest nieprawidło wy	
			Licznil (k bitów BitList)	Kierunek silnika aktywnej partii jest lewobieżny, jeśli ustawiony kierunek silnika parti jest lewoobieżny	
105	ActiveBatchId	Odczyt	UInt32	Podaje bieżą partię wedłu identyfikator	cą aktywną g a	

tab. 12 - Model pompy			
Numer	Model pompy		
0	530		
1	630		
2	730		

tab. 13 - F	PumpHead		
Numer	Głowica pompy	Domyślna prędkość	Uwagi
0	505CA	0,1– 220 obr./min	
1	313D	0,1– 220 obr./min	
2	313D2	0,1– 220 obr./min	
3	314D	0,1– 220 obr./min	
4	314D2	0,1– 220 obr./min	
5	520R	0,1– 220 obr./min	
6	520R2	0,1– 220 obr./min	
7	505L z wężem w jednym odcinku	0,1– 220 obr./min	
8	505L w wersji podwójnej	0,1– 220 obr./min	
9	520 w wersji sanitarnej	0,1– 220 obr./min	
10	520 w wersji przemysłowej	0,1– 220 obr./min	
11	620R	0,1– 265 obr./min	Domyślny zakres to 0,1–165 obr./min. Maksymalną prędkość można podwyższyć do 265 obr./min za pomocą parametru maks. prędkości lub ekranu
12	620L z wężem w jednym odcinku	0,1– 265 obr./min	
13	620L w wersji podwójnej	0,1– 265 obr./min	
14	620RE w wersji sanitarnej	0,1– 265 obr./min	

tab. 13 - PumpHead

	•		
Numer	Głowica pompy	Domyślna prędkość	Uwagi
15	620RE4 w wersji sanitarnej	0,1– 265 obr./min	
16	620RE w wersji przemysłowej	0,1– 265 obr./min	
17	620RE4 w wersji przemysłowej	0,1– 265 obr./min	
18	720R	0,1–360 obr./min	
19	720 w wersji sanitarnej	0,1–360 obr./min	
20	720 w wersji przemysłowej	0,1–360 obr./min	

tab. 14 - Grubość ścianki

Numer	Grubość ścianki	Uwagi
0	0.8 mm	
1	1.6 mm	
2	2.4 mm	
3	2.8 mm	
4	3.2 mm	
5	4.0 mm	
6	4.8 mm	

tab. 15 - Średnica wewnętrzna					
Numer	Średnica wewnętrzna	Uwagi			
0	0.13 mm				
1	0.19 mm				
2	0.25 mm				
3	0.38 mm				
4	0,50 mm				
5	0,63 mm				
6	0,76 mm				
7	0,80 mm				
8	0,88 mm				
9	1,02 mm				
10	1,14 mm				
11	1,29 mm				
12	1,42 mm				
13	1,52 mm				
14	1,60 mm				
15	1,65 mm				
16	1,85 mm				
17	2,05 mm				
18	2,29 mm				
19	2,54 mm				
20	2,79 mm				
21	3,20 mm				
22	4,80 mm				
23	6,40 mm				
24	8,00 mm				
25	9,60 mm				
26	12,0 mm				

tab. 15 - Średnica wewnętrzna					
Numer	Średnica wewnętrzna	Uwagi			
27	12,7 mm				
28	15,9 mm				
29	16,0 mm				
30	17,0 mm				
31	19,0 mm				
32	25,4 mm				

tab. 16 - Model czujnika ciśnienia					
Numer	Model czujnika ciśnienia	Uwagi			
0	Brak				
1	Press-N-0xx				
2	Parker Scilog				
3	Zwykły czujnik ciśnienia				
4	Balluff BSP Series				

tab. 17 - Rozmiar czujnika ciśnienia				
Numer	Rozmiar czujnika ciśnienia	Uwagi		
0	Brak			
1	PRESS_N_SIZE_025			
2	PRESS_N_SIZE_038			
3	PRESS_N_SIZE_050			
4	PRESS_N_SIZE_075			
5	PRESS_N_SIZE_100			

tab. 18 - Model czujnika przepływu				
Numer	Model czujnika przepływu	Uwagi		
0	Brak			
1	C0.55 V2.0			
2	Em-tec BioProTT			
3	FlexMag 4050C			
4	Zwykły czujnik przepływu			
5	IFM SM4000, SM6000, SM7000 & SM8000			

tab. 19 - Rozmiar czujnika przepływu					
Numer	Rozmiar czujnika przepływu	Uwagi			
0	Brak				
1	4050C_SIZE_38				
2	4050C_SIZE_12				
3	4050C_SIZE_34				
4	4050C_SIZE_1				

19.4 Przewodnik zgodności EDS

tab. 20 - Przewodnik zgodności EDS				
Plik EDS (dostępny w witrynie)	Data wydania EDS	Modele pomp	Kompatybilność z wersjami oprogramowania pomp	Uwagi do wersji
Plik kontrolny 530/630/730 EtherNet/IP EDS wer. 2.1	marzec 2020 r.	530En, 630En, 730En	0.26.02	Wstępne wydanie EDS
Plik kontrolny 530/630/730 EtherNet/IP EDS wer. 2.2	listopad 2020 r.	530En, 630En, 730En	0.27.04 0.27.05	Dodanie numeru zasobu (parametr 63), potwierdzenie błędu (parametr 64), zakres RPI (parametr 65), zmiana kolejności parametrów

tab. 20 - Przewodnik zgodności EDS

Plik EDS (dostępny w witrynie)	Data wydania EDS	Modele pomp	Kompatybilność z wersjami oprogramowania pomp	Uwagi do wersji
Plik kontrolny 530/630/730 EtherNet/IP EDS wer. 2.5	styczeń 2021 r.	530En, 630En, 730En	0.41.03	Dodanie błędu PressureSwitchError (parametr 106), zastosowanie bitu 7 w alarmie ogólnym dla błędu PressureSwitchError, zastosowanie bitu 6 w alarmie ogólnym dla błędu DispenseInturrupted, AssetNumber (parametr 63) przeniesiony do acyklicznych rekordów danych, zmiana nazw parametrów 61 i 62 na AnybusNetworkMode i AnybusNetworkActive,

Łącze do pliku EDS:

1. Przejdź na stronę: <u>https://www.wmftg.com/en/literature/other-</u> <u>resources/software-</u> <u>and-</u> devices/

Uwagi:

- 1. Jeśli oprogramowanie pompy jest kompatybilne z wieloma wersjami plików EDS, zaleca się korzystanie z najnowszej dostępnej wersji.
- 2. Aby znaleźć wersję oprogramowania pompy, należy wybrać na pompie **Pomoc**, a następnie **Oprogramowanie**
- Aby zapewnić dobrą komunikację między pompą a układem sterowania, należy stosować właściwą wersję pliku EDS w połączeniu z wymienionymi wersjami oprogramowania pompy.
- 4. Sieci wykorzystujące pompy z różnym oprogramowaniem i w rożnych wersjach EDS są dopuszczalne, pod warunkiem że każda pompa korzysta z właściwej wersji EDS

20 Czujniki

Podłączenie czujników do pompy umożliwia wskazywanie wartości, ostrzeżeń i błędów dotyczących ciśnienia lub przepływu stosownie do wybranych ustawień.

Jeśli są podłączone czujniki, możliwe jest konfigurowanie nastaw progu ostrzeżenia i alarmu w pompie.

Każda pompa może odbierać sygnały od maksymalnie jednego czujnika ciśnienia przepływu i jednego czujnika ciśnienia równocześnie.

20.1 Okablowanie czujnika

Przed przystąpieniem do konfigurowania czujnika należy go poprawnie połączyć kablami z pompą. ("Okablowanie sterowania" on page27 lub "Złącza wejścia/wyjścia" on page34).

rys. 22 - Okablowanie czujnika

20.2 Konfigurowanie czujników

 W menu USTAWIENIA STEROWANIA za pomocą przycisków A / V przewiń do opcji Ustawienia czujnika i naciśnij SELECT.

2. Za pomocą przycisków **A / v** przewiń do opcji **Konfiguracja czujników** i naciśnij **SELECT.**

 Za pomocą przycisków A / v przewiń do opcji Przepływ lub Ciśnienie i naciśnij SELECT. W ten sposób wybrany zostanie typ konfigurowanego czujnika.

4. Wyświetlona zostanie lista obsługiwanych rodzin czujników przepływu. W powyższym przykładzie pokazane są obsługiwane czujniki przepływu. Za pomocą przycisków A / v przewiń do żądanego czujnika przepływu i naciśnij SELECT.

5. Konieczne jest przypisanie wejścia, do którego podłączony jest czujnik.

6. Za pomocą przycisków 🔨 / 🗸 przewiń do żądanego czujnika przepływu i naciśnij **SELECT**.

7. Specyfikacje połączeń zawiera sekcja "Okablowanie sterujące EtherNet/IP™" on page25.

8. Za pomocą przycisków 🔨 / 🗸 przewiń do żądanego rozmiaru czujnika i naciśnij SELECT.

- 9. Za pomocą przycisków **A / v** przewiń do żądanej jednostki wyjściowej i naciśnij **SELECT.**
- 10. Od wyboru tej opcji zależą jednostki wyświetlane na ekranie głównym.

Ustawianie poziomu alarmu i ostrzeżenia

1. Za pomocą przycisków ∧ / ∨ przewiń do poziomu alarmu do skonfigurowania i naciśnij **SELECT**.

 Gdy osiągnięty zostanie poziom ostrzeżenia, dolny i górny pasek zmienią kolor na pomarańczowy

4. Gdy osiągnięty zostanie poziom alarmu, na ekranie pompy zostanie wyświetlony komunikat o wykryciu alarmu czujnika i pompa zostanie zatrzymana.

20.3 Opóźnienie startu

To ustawienie wyznacza czas od uruchomienia silnika, po którym uaktywniane są alarmy/ostrzeżenia. Opóźnienie startu uaktywniane jest w momencie uruchomienia silnika (niezależnie od trybu, w tym **MAX**).

1. W menu ustawień sterowania za pomocą przycisków **A /v** przejdź do opcji **Ustawienia czujnika** i naciśnij **SELECT**

- 3.
- Za pomocą przycisków 🔨 🖊 🗸 ustaw wartość i naciśnij SELECT , aby zapisać.

20.4 Zwykłe czujniki

Opcja Zwykłe czujniki umożliwia korzystanie w systemie z dowolnego czujnika o sygnale wyjściowym 4–20 mA i charakterystyce liniowej. Maks. wartości znamionowe czujnika przepływu/ciśnienia podane są w tabeli na końcu tego rozdziału.

W menu ustawień sterowania za pomocą przycisków
przejdź do opcji Ustawienia czujnika i naciśnij SELECT

2. Za pomocą przycisków v/v przejdź do opcjiKonfiguracja czujników i naciśnij SELECT

3. Za pomocą przycisków "/v przejdź do opcji **Przepływ** lub **Ciśnienie** i naciśnij **SELECT**. W ten sposób wybrany zostanie typ konfigurowanego czujnika.

 Za pomocą przycisków ∧/v przejdź do opcji Zwykły czujnik przepływu lub Zwykły czujnik ciśnienia i naciśnij SELECT.

5. Za pomocą przycisków ∧/v przejdź do opcji Wejście 4–20 mA 1 lub Wejście 4–20 mA 2 i naciśnij SELECT. Wybór zależy od tego, do którego złącza podłączony jest czujnik. Specyfikacje połączeń zawiera sekcja "Okablowanie sterujące EtherNet/IP™" on page25. Obsługiwane są tylko zwykłe czujniki emitujące sygnał 4–20 mA.

Za pomocą przycisków \screw l v wybierz typ wyjścia czujnika i naciśnij SELECT. Opcje przedstawione w tabeli zależą od wybranego typu czujnika:

tab. 21 - Zespoły czujników

Przepływ	Ciśnienie
ul/min	Bar
ml/min	Psi
ml/hr	
l/min	
l/min	
7. Po wybraniu typu czujnika użytkownik przechodzi do ekranu WARTOŚCI ZWYKŁEGO CZUJNIKA

8. Za pomocą przycisków <a>/v przejdź do opcji Ustaw wartość 4 mA

Za pomocą przycisków
Za pomocą przycisków
zmień wartość raportowaną, gdy wejście czujnika ma natężenie 4 mA. Gdy wartość będzie poprawna, naciśnij przycisk SELECT.

10. Za pomocą przycisków "/v przejdź do opcji **Ustaw wartość 20mA**

 Za pomocą przycisków ∧/v zmień wartość raportowaną, gdy wejście czujnika ma natężenie 20 mA. Gdy wartość będzie poprawna, naciśnij przycisk SELECT.

12. Zakres dozwolonych wartości ustawienia zależnie od wybranego czujnika i jednostek jest podany w tabelach

tab. 22 - Granice ciśnienia czujników

Jednostka ciśnienia	Minimalna wartość	Maksymalna wartość
PSI	-10,0	75
Bar	-0,689	5,171

tab. 23 - Granice przepływu czujników

Jednostka przepływu	Minimalna wartość	Maksymalna wartość
ul/min	0	6000000
ml/min	0	60000
ml/hr	0	900000
l/min	0	60
l/hr	0	900

Poziomy alarmu/ostrzeżenia

Wyświetlony zostanie ekran Poziomy ostrzeżeń/błędów, patrz punkt "Ustawianie poziomu alarmu i ostrzeżenia" on page103. Jako wartości błędu i ostrzeżenia przyjmowane będą domyślnie wartości przyporządkowane do 4 mA i 20 mA. Użytkownik powinien skonfigurować progi ostrzeżenia i błędu stosownie do wymagań własnego procesu.

Przykład

Jeśli podłączony jest czujnik 4–20 mA o zakresie 0–10 psi:

- Ustawieni 4 mA na 0 psi
- Ustawieni 20 mA na 10 psi
- Górny próg alarmu wyznaczony został na 8 psi
- Górny próg ostrzeżenia wyznaczony został na 7 psi
- Dolny próg ostrzeżenia wyznaczony został na 3 psi
- Dolny próg alarmu wyznaczony został na 2 psi

rys. 23 - Ustawianie poziomów alarmu/ostrzeżenia

А

Prąd (A) / Ciśnienie (psi)

Zdarzenie alarmu wskazywane jest na wykresie liniami ciągłymi (A_L, A_H). Jeśli wystąpi alarm, pompa wyświetli czerwony ekran alarmu i zostanie zatrzymana. Alarm wyzwalany jest, gdy sygnał czujnika jest równy wartości ustawionej przez parametry Alarm Max/Min lub Ethernet Hi-Hi/Lo-Lo lub od nich większy. Użytkownik musi przyjąć do wiadomości ten ekran w pompie.

Zdarzenie ostrzeżenia wskazywane jest na wykresie liniami przerywanymi (W_L, W_H). W trakcie zdarzenia ostrzeżenia na ekranie pompy wyświetlane będą pomarańczowe paski ostrzegawcze i w komunikacji Ethernet postawiony będzie bit ostrzeżenia. To zdarzenie wyzwalane jest, gdy sygnał czujnika jest równy wartości ustawionej przez parametry Warning Max/Min lub Ethernet Hi-Lo/Lo-Hi lub od nich większy.

Uwaga: 10waga: wahania zarówno ciśnienia, jak i przepływu są normalnym zjawiskiem w pompach perystaltycznych. Oznacza to, że wyznaczając limity ostrzeżenia i alarmu należy wziąć pod uwagę krótkotrwałe skoki i zmiany tych wartości.

Uwaga: Pompa nie ma wpływu na dokładność sygnałów pochodzących z czujników i będzie tylko reagować na odbierane sygnały. Za precyzję działania czujnika odpowiada jego dostawca i zależy ona od szeregu czynników, jak typ płynu, materiał węża i temperatura.

Procedura

1. Na ekranie **WARTOŚCI ZWYKŁYCH CZUJNIKÓW**.

2. Za pomocą przycisków Ny przejdź do ekranu Poziomy alarmu/ostrzeżenia

3. Za pomocą przycisków A/v wybierz wartość, którą chcesz zmienić i naciśnij **SELECT.**

- 4. Za pomocą przycisków Vy przejdź do żądanej wartości i naciśnij WYBIERZ
- 5. Naciśnij przycisk **BACK** , aby zapisać zmiany i powrócić do ekranu **WARTOŚCI ZWYKŁYCH CZUJNIKÓW**

Współczynnik skalowania dla zwykłych czujników

Ustawianie korekty nachylenia

Parametr nachylenia będzie skalował nachylenie kanału określone przez punkty 4 mA i 20 mA. Parametr może przyjmować wartości od 0,8 do 1,2, gdzie 1 spowoduje brak zmiany nachylenia.

rys. 24 - Ustawianie korekty nachyleniaAKonfiguracja czujnika określona przez wartość 4 mA i 20 mABUstawiona regulacja nachylenia jest większa niż 1CUstawiona regulacja nachylenia jest mniejsza niż 1y1Wartość 4 mA ("Zwykłe czujniki" on page106)y2Wartość 20mA ("Zwykłe czujniki" on page106)

Procedura

1. Na ekranie **WARTOŚCI ZWYKŁYCH CZUJNIKÓW**.

2. Za pomocą przycisków *N* v przejdź do opcji Ustawianie korekty nachylenia

3. Za pomocą przycisków *N*v przejdź do żądanej wartości i naciśnij **WYBIERZ**

Ustawianie korekty przesunięcia

Parametr przesunięcia zastosuje przesunięcie w całym zakresie mA kanału i nie będzie miał wpływu na nachylenie.

rys. 25 - Ustawianie korekty przesunięcia

А	Konfiguracja czujnika określona przez wartość 4 mA i 20 mA
В	Ustawiona regulacja przesunięcia jest większa niż 1
С	Ustawiona regulacja przesunięcia jest mniejsza niż 1
У ₁	Wartość 4 mA
y ₂	Wartość 20mA

Procedura

1. Na ekranie WARTOŚCI ZWYKŁYCH CZUJNIKÓW.

2. Za pomocą przycisków "/v przejdź do opcji Ustawianie korekty przesunięcia

3. Za pomocą przycisków <a>/v przejdź do żądanej wartości i naciśnij WYBIERZ

20.5 Odczyt czujnika przepływu

1. Wartość czujnika przepływu można odczytać na ekranie Flow sensor reading (Odczyt czujnika przepływu)

21 Rozwiązywanie problemów

Jeżeli wyświetlacz pompy pozostaje pusty po jej włączeniu, należy wykonać następujące czynności sprawdzające:

- Sprawdzić, czy napięcie zasilania sieciowego jest doprowadzane do pompy.
- Sprawdzić bezpiecznik we wtyczce ściennej, jeżeli wtyczka jest w niego wyposażona.
- Sprawdź położenie przełącznika napięcia.
- Sprawdź wyłącznik zasilania z tyłu pompy.
- Sprawdź bezpiecznik w gnieździe bezpiecznikowym, w środku tablicy rozdzielczej z tyłu pompy.

Jeżeli pompa pracuje, ale jej wydatek jest niewielki lub nie ma go wcale, wykonać następujące czynności sprawdzające:

- Sprawdzić, czy płyn jest doprowadzony do pompy.
- Sprawdzić, czy występują jakieś zagięcia albo załamania przewodów lub blokady w przewodach.
- Sprawdź, czy zawory na rurociągach są otwarte.
- Sprawdź, czy wąż i rotor są zainstalowane na głowicy pompy.
- Sprawdź, czy wąż nie jest pęknięty ani rozerwany.
- Sprawdź, czy używany jest wąż o odpowiedniej grubości ścianki.
- Sprawdź kierunek obrotów.
- Sprawdź, czy rotor nie ślizga się po wale napędowym.

Jeśli pompa włącza się, ale nie działa:

- Sprawdzić funkcję zdalnego zatrzymywania i konfigurację.
- Sprawdzić tryb pracy i czy jest on ustawiony na Analogowy .
- Spróbować włączyć pompę i sprawdzić jej działanie w trybie **Ręcznym** .

21.1 Kody błędów

Jeśli wystąpi błąd wewnętrzny, wyświetlony zostanie ekran błędu z czerwonym tłem. Uwaga: Ekrany błędów Signal out of range (Sygnał poza zakresem), Over signal (Nadmierny sygnał) i Leak detected (Wykryto upływ) zgłaszają stan o charakterze zewnętrznym. Nie migają.

tab. 24 - Kody błędów					
Kod błędu	Stan błędu	Sugerowane działanie			
Er 0	Błąd zapisu w pamięci FRAM	Spróbować wykonać resetowanie przez wyłączenie i włączenie zasilania. W przeciwnym wypadku zawiadom dostawcę.			
Er 1	Uszkodzenie pamięci FRAM	Spróbować wykonać resetowanie przez wyłączenie i włączenie zasilania. W przeciwnym wypadku zawiadom dostawcę.			

tab. 24 - Kody błędów

Kod błędu	Stan błędu	Sugerowane działanie
Er 2	Błąd zapisu FLASH podczas aktualizacji napędu	Spróbować wykonać resetowanie przez wyłączenie i włączenie zasilania. W przeciwnym wypadku zawiadom dostawcę.
Er 3	Uszkodzenie pamięci FLASH	Spróbować wykonać resetowanie przez wyłączenie i włączenie zasilania. W przeciwnym wypadku zawiadom dostawcę.
Er 4	Błąd cienia pamięci FRAM	Spróbować wykonać resetowanie przez wyłączenie i włączenie zasilania. W przeciwnym wypadku zawiadom dostawcę.
Er 9	Silnik zatrzymał się	Natychmiast zatrzymać pompę. Sprawdzić głowicę pompy i rurkę. Wyłączenie/włączenie zasilania może zresetować urządzenie. W przeciwnym wypadku zawiadom dostawcę.
Er10	Usterka tachometru	Natychmiast zatrzymać pompę. Wyłączenie/włączenie zasilania może zresetować urządzenie. W przeciwnym wypadku zawiadom dostawcę.
Er14	Błąd prędkości	Natychmiast zatrzymać pompę. Wyłączenie/włączenie zasilania może zresetować urządzenie. W przeciwnym wypadku zawiadom dostawcę.
Er15	Przetężenie	Natychmiast zatrzymać pompę. Wyłączenie/włączenie zasilania może zresetować urządzenie. W przeciwnym wypadku zawiadom dostawcę.
Er16	Przepięcie	Natychmiast zatrzymać pompę. Sprawdzić zasilanie. Wyłączenie/włączenie zasilania może zresetować urządzenie.
Er17	Podnapięcie	Natychmiast zatrzymać pompę. Sprawdzić zasilanie. Wyłączenie/włączenie zasilania może zresetować urządzenie.
Er20	Sygnał poza zakresem	Sprawdzić zakres analogowego sygnału sterowania. Odpowiednio ograniczyć sygnał. W przeciwnym wypadku zawiadom dostawcę.
Er21	Nadmierny sygnał	Zmniejsz analogowy sygnał sterowania.

tab. 24 - Kody błędów

Kod błędu	u Stan błędu Sugerowane działanie	
Err50	Błąd komunikacji (wewnętrzny błąd komunikacji w pompie, a nie błąd sieci)	Spróbować wykonać resetowanie przez wyłączenie i włączenie zasilania. W przeciwnym wypadku zawiadom dostawcę.

21.2 Pomoc techniczna

Watson-Marlow Fluid Technology Group Falmouth, Cornwall TR11 4RU Wielka Brytania

Aby uzyskać pomoc, skontaktuj się z lokalnym przedstawicielem Watson-Marlow. www.wmftg.com/contact

22 Konserwacja napędu

Wewnątrz pompy nie ma części, które użytkownik może naprawiać samodzielnie. W sprawie zorganizowania naprawy należy skontaktować się z lokalnym przedstawicielem Watson-Marlow.

23 Części zamienne napędu

tab. 25 - Części zamienne napędu	
Opis	Część Nr
Wymienny bezpiecznik główny, typ T5A, H 250 V 20 mm (5 w zestawie)	MRA3083A
Nóżki (5 w zestawie)	MNA2101A
Uszczelnienie modułu	MN2516B
Pokrywa przełącznika modułu	MN2505M
Dławnica (Std)	GR0056
Dławnice (EMC)	GR0075
Podkładka uszczelniająca do zaślepki lub dławnicy	GR0058
Odpowietrznik mocowany na zatrzask	MN2513B
Osłona M12	MN2943B
Izolowane kołnierze M12	MN2934T
Nieizolowane kołnierze M12	MN2935T
Kabel Ethernet, 4-stykowy kątowy wtyk M12D na 4-stykowy prosty wtyk M12D, CAT 5 z ekranowaniem, 3 m	059.9121.000
Kabel Ethernet, 4-stykowy kątowy wtyk M12D na RJ45, CAT 5 z ekranowaniem, 3 m	059.9122.000
Kabel Ethernet, RJ45 na RJ45, CAT 5 z ekranowaniem, 3 m	059.9123.000
Adapter RJ45(skt) na M12 D CODE (skt) IP68	059.9124.000
Zestaw wykrywacza nieszczelności do 730 En	079.9151.000
Zestaw wykrywacza nieszczelności do 730 EnN	079.9161.000
Kabel krosowy RJ45 na RJ45	059.9125.000

24 Wymiana głowicy pompy

Pamiętaj zawsze o odłączeniu zasilania pompy przed otwarciem osłony, bieżni lub przystąpieniem do przeprowadzania jakichkolwiek czynności związanych z umiejscowieniem, demontażem lub konserwacją.

Podstawowe bezpieczeństwo zapewnia zamykana za pomocą narzędzi bieżnia głowicy pompy. Drugorzędne (dodatkowe) zabezpieczenie jest zapewnione przez osłonę przełącznika, która zatrzymuje pompę w przypadku otwarcia bieżni głowicy pompy. wyłącznika ochronnego w pompach z osłoną nigdy nie wolno używać jako zabezpieczenia podstawowego. Przed otwarciem osłony głowicy pompy należy zawsze odłączyć zasilanie sieciowe od pompy.

24.1 Wymiana głowicy pompy 720R i 720RE

720RX i 720REX

Demontaż

25 Wymiana węży

Pamiętaj zawsze o odłączeniu zasilania pompy przed otwarciem osłony, bieżni lub przystąpieniem do przeprowadzania jakichkolwiek czynności związanych z umiejscowieniem, demontażem lub konserwacją.

25.1 Węże ciągłe

720R

25.2 Elementy wężowe

720RE

tab. 26 - Ogólny przewodnik dotyczący czyszczenia rozpuszczalnikami

Chemia	Środki bezpieczeństwa podczas czyszczenia
Węglowodory alifatyczne	Zdejmij osłonę. Należy minimalizować narażenie kołpaka rotora i osłony sprzęgła do mniej niż jednej minuty (ryzyko reakcji).
Węglowodory aromatyczne	Zdejmij osłonę. Należy minimalizować narażenie kołpaka rotora i osłony sprzęgła do mniej niż jednej minuty (ryzyko reakcji).
Rozpuszczalniki ketonowe	Zdejmij osłonę. Należy minimalizować narażenie kołpaka rotora i osłony sprzęgła do mniej niż jednej minuty (ryzyko reakcji).
Rozpuszczalniki halogenowane/chlorowane	Nie są zalecane: możliwe ryzyko dla poliwęglanowych regulatorów zacisków wężyka i polipropylenowych elementów ustalających zacisków wężyka.
Alkohole (ogólnie)	Ostrożność nie jest konieczna.
Glikole	Należy minimalizować narażenie kołpaka rotora i osłony sprzęgła do mniej niż jednej minuty (ryzyko reakcji).
Rozpuszczalniki estrowe	Zdejmij osłonę. Należy minimalizować narażenie kołpaka rotora i lokalizatora obejmy rury do mniej niż jednej minuty (ryzyko reakcji).
Rozpuszczalnik eterowy	Nie są zalecane: możliwe ryzyko dla poliwęglanowych regulatorów zacisków wężyka i polipropylenowych elementów ustalających zacisków wężyka.

26 Informacje dotyczące zamawiania

26.1 Numery katalogowe pompy

*Moduł (F) do czujnika przepływu KROHNE

Numery części przewodów i elementów 26.2

tab. 27 - Przewody w jednym odcinku do głowic pomp 720R						
mm		cal	#	Marprene	Bioprene	Pumpsil silikon
9.6		3/8	193	902.0096.048	933.0096.048	913.A096.048
12.7		1/2	88	902.0127.048	933.0127.048	913.A127.048
15.9		5/8	189	902.0159.048	933.0159.048	913.A159.048
19.0		3/4	191	902.0190.048	933.0190.048	913.A190.048
25.4		1	92	902.0254.048	933.0254.048	913.A254.048
mm	cal	#		Neopren	STA-PURE Seria PCS	
9.6	3/8	193			961.0096.048	
12.7	1/2	88		920.0127.048	961.0127.048	
15.9	5/8	189		920.0159.048	961.0159.048	
19.0	3/4	191		920.0190.048	961.0190.048	
25.4	1	92		920.0254.048	961.0254.048	

tab. 28 - Elementy sanitarne ze złączami trójzaciskowymi PVDF

mm	cal	#	STA-PURE Seria PCS	Bioprene TL	Pumpsil silikon
12.7	1/2	88	961.0127.PFT	933.0127.PFT	913.A127.PFT
15.9	5/8	189	961.0159.PFT	933.0159.PFT	913.A159.PFT
19.0	3/4	191	961.0190.PFT	933.0190.PFT	913.A190.PFT
25.4	1	92	961.0254.PFT	933.0254.PFT	913.A254.PFT

tab. 29 - Elementy przemysłowe ze złączami wtykowymi PP Cam-and-Groove

mm	cal	#	Marprene TL	Neopren	Pumpsil silikon
12.7	1/2	88	902.0127.PPC	920.0127.PPC	913.A127.PPC
15.9	5/8	189	902.0159.PPC	920.0159.PPC	913.A159.PPC
19.0	3/4	191	902.0190.PPC	920.0190.PPC	913.A190.PPC
25.4	1	92	902.0254.PPC	920.0254.PPC	913.A254.PPC

26.3 Części zamienne głowicy pompy

Modele przewodów w jednym odcinku 720R i 720RX

rvs.	26 - Modele	przewodów w	iednvm	odcinku	720R i 720RX
		p	,,	•••••	

tab. 30 - Modele przewodów w jednym odcinku 720R i 720RX							
Pozycja	Część zamienna	Opis					
1	MRA3062A	Zespół rotora (720R)					
1	MRA0036A	Zespół rotora (720RX)					
2	MRA0104A	Zespół pokrętła (przewody o grubości ścianek 4,8 mm)					
3	CN0090	Półsprzęgło					
4	MR0880C	Zacisk węża					
5	MRA3061A	Zespół nóżek					
6	CN0229	Zaślepka M12					
7	CN0088	Pająk sprzęgła					
8	MRA0027A	Zespół sworznia przegubowego					
8	MRA0034A	Zespół sworznia obrotowego (720RX)					

tab. 30 - Modele przewodów w jednym odcinku 720R i 720RX							
Pozycja	Część zamienna	Opis					
9	FN0611	Śruba M8 x 16 mm					
10	MR0662T	Trzpień (ustawiony na 61 mm)					
11	MRA3063A	Zespół bieżni					
12	CN0228	Zaślepka M25					
13	MR0882M	Tuleja mimośrodowa					
14	MR3041T	Śruba M8 x 307 mm (720RX)					
14	MR3040T	Śruba M8 x 157 mm (720R)					

Modele elementów LoadSure 720RE i 720REX

rys. 27 - Modele elementów LoadSure 720RE i 720REX

tab. 31 - Modele elementów LoadSure 720RE i 720REX							
Pozycja	Część zamienna	Opis					
1	MRA3062A	Zespół rotora (720RE)					
1	MRA0036A	Zespół rotora (720REX)					
2	MRA0319A	Zespół pokrętła (przewody o grubości ścianek 4,8 mm)					
3	CN0090	Półsprzęgło					
4	MR1118T	Zacisk przesuwny					
5	MRA3061A	Zespół nóżek					
6	CN0229	Zaślepka M12					
7	CN0088	Pająk sprzęgła					
8	MRA0027A	Zespół sworznia przegubowego					
8	MRA0034A	Zespół sworznia przegubowego (720REX)					

Pozycja	Część zamienna	Opis	
9	FN0611	Śruba M8 x 16 mm	
10	MR0662T	Trzpień (ustawiony na 61 mm)	
11	MRA3064A	Zespół bieżni	
12	CN0228	Zaślepka M25	
13	MR0882M	Tuleja mimośrodowa	
14	MR3041T	Śruba M8 x 307 mm (720REX)	
14	MR3040T	Śruba M8 x 157 mm (720RE)	

27 Parametry użytkowe

27.1 Dane wydajnościowe 720R, 720RE, 720R/RX i 720RE/REX

Warunki pompowania

Wszystkie wartości parametrów eksploatacyjnych zarejestrowano przy maksymalnych wartościach ciśnienia w rurociągach.

Niniejsza pompa jest przystosowana do ciśnienia maksymalnego 2 barów (30 psi), w przypadku wyposażenia w głowicę pompy 720R, 720RE, 720R/RX lub 720RE/REX za pomocą przewodów wysokociśnieniowych. Jednakże, w przypadku zablokowania przepływu w rurociągu, ciśnienie maksymalne może osiągnąć do 4 barów (58 psi). W przypadku, gdy istotne jest, aby nie przekraczać ciśnienia 2 barów (30 psi), na rurociągach należy zainstalować zawory nadmiarowe.

Przy ciśnieniach wylotowych przekraczających wartość 1 bara (15 psi) wydajność przepływu może być obniżona. Dotyczy to szczególnie podwójnych głowic pomp. Należy zapoznać się z poniższymi tabelami wydajności.

Uwaga: wspomniane natężenia przepływów zostały dla uproszczenia zaokrąglone z dokładnością do 5% – bez problemu mieszczą się one w zakresie normalnej tolerancji zmian natężeń przepływów w przewodach. Niemniej należy je traktować jedynie jako wskazówki. Rzeczywiste wartości natężenia przepływu należy określić doświadczalnie dla każdego zastosowania.

		2			•						
	0.25 bar (3.6 psi)		0.5 bar (8 psi)		1 bar (1 bar (15 psi)		1.5 bar (22 psi)		2 bar (30 psi)	
Jedna głowica pompy (720R, 720RE)	Maks. prędkoś ć (obr./mi n)	Maks. natężeni e przepływ u (US gph)	Maks. prędkoś ć (obr./mi n)	Maks. przepły w	Maks. prędkoś ć (obr./mi n)	Maks. przepły w	Maks. prędkoś ć (obr./mi n)	Maks. przepły w	Maks. prędkoś ć (obr./mi n)	Maks. przepły w	
9,6 mm (0,4")	360	420 (111)	360	420 (111)	360	420 (111)	360	420 (111)	360	420 (111)	
12,7 m m (0,5")	360	780 (206)	360	780 (206)	360	780 (206)	360	780 (206)	360	780 (206)	
15,9 m m (0,6")	360	1100 (291)	360	1100 (291)	360	1100 (291)	360	1100 (291)	300	900 (238)	
19,0 m m (0,7")	360	1500 (396)	360	1500 (396)	360	1500 (396)	300	1300 (343)	250	1000 (264)	
25,4 m m (1,0")	360	2000 (528)	360	2000 (528)	360	2000 (528)	200	1100 (291)			

Natężenia przepływów 720R i 720RE

tab. 32 - Wartości graniczne wydainości pomp w obudowach 730

(1,0") (528) (528) (528) (528) (291)

* Maksymalna prędkość jest ograniczana przy większych ciśnieniach wylotowych, aby zagwarantować bezpieczną pracę pompy.

rys. 28 - Wartości graniczne wydajności pomp w obudowach 730

Natężenia	przepł	ywów	720R/RX	i	720RE/REX
-----------	--------	------	---------	---	-----------

Podwój na głowica pompy (720R/R X, 720RE/R EX)	0.25 bar (3.6 psi)		0.5 bar (8 psi)		1 bar (15 psi)		1.5 bar (22 psi)		2 bar (30 psi)	
	Maks. prędko ść (obr./m in)	Maks. natęże nie przepły wu (US gph)	Maks. prędko ść (obr./m in)	Maks. przepł yw	Maks. prędko ść (obr./m in)	Maks. przepł yw	Maks. prędko ść (obr./m in)	Maks. przepł yw	Maks. prędko ść (obr./m in)	Maks. przepł yw
9,6 mm (0,4")	300	700 (185)	300	700 (185)	300	700 (185)	250	590 (156)	200	470 (124)
12,7 m m (0,5")	300	1300 (343)	300	1300 (343)	250	1100 (291)	200	870 (230)	175	760 (261)
15,9 m m (0,6")	300	1800 (476)	200	1200 (317)	175	1100 (291)				
19,0 m m (0,7")	300	2500 (660)	200	1700 (449)	160	1390 (366)				
25,4 m m (1,0")	300	3300 (872)	200	2200 (581)						

tab. 33 - Wartości graniczne wydajności pomp w obudowach 730

* Maksymalna prędkość jest ograniczana przy większych ciśnieniach wylotowych, aby zagwarantować bezpieczną pracę pompy.

rys. 29 - Wartości graniczne wydajności pomp w obudowach 730

28 Znaki towarowe

Watson-Marlow, LoadSure, Qdos, ReNu, LaserTraceability, Pumpsil, PureWeld XL, Bioprene, Marprene oraz Maxthane są zarejestrowanymi znakami towarowymi firmy Watson-Marlow Limited. Tri-Clamp jest zastrzeżonym znakiem towarowym firmy Alfa Laval Corporate AB.

STA-PURE Series PCS i STA-PURE Series PFL to znaki towarowe firmy W.L.Gore and Associates.

EtherNet/IP[™] to znak towarowy firmy ODVA, Inc.

Studio 5000® to znak towarowy firmy Rockwell Automation.

Siemens jest zastrzeżonym znakiem towarowym firmy Siemens AG.

SciLog® i SciPres® są zarejestrowanymi znakami towarowymi firmy Parker Hannifin Corporation.

BioProTT[™] jest znakiem towarowym firmy em-tec GmbH.

PendoTECH® i PressureMAT® są zarejestrowanymi znakami towarowymi PendoTECH.

FLEXMAG[™] jest znakiem towarowym firmy KROHNE Messtechnik GmbH.

SONOFLOW® jest znakiem towarowym i marką firmy SONOTEC Ultraschallsensorik Halle GmbH.

29 Ograniczenie odpowiedzialności

Informacje zawarte w niniejszym dokumencie uważa się za prawdziwe, ale Watson-Marlow Fluid Technology Group nie bierze odpowiedzialności za jakiekolwiek zawarte w nim błędy i zastrzega sobie prawo do wprowadzania zmian w specyfikacji bez powiadomienia.

OSTRZEŻENIE! Niniejszy produkt nie jest przeznaczony do zastosowań związanych z pacjentem i nie należy go stosować w tym celu.

30 Historia publikacji

Plik	Data wydania	Uwagi
m-730en-01 Pompa 730En/EnN	04.20	Pierwsze wydanie
m-730en-08 Pompa 730En/EnN	04.20	Wszystkie wersje zaktualizowane i ujednolicone w wydaniu 8
m-730en-08,1 Pompa 730En/EnN	09.20	Zaktualizowano informacje o EtherNet/IP™ EDS.
m-730en-09 Pompa 730En/EnN	01.22	Zaktualizowano informacje o EtherNet/IP™ EDS. Dodano sekcję dozowania. Dodano skalowanie czujników.

31 Wykaz tabel i rysunków

31.1 Tabele

tab. 1 - Dane techniczne
tab. 2 - Masa
tab. 3 - Kody kolorów przewodów 22
tab. 4 - Podłączanie złącza D-Sub
tab. 5 - Złącza wejścia/wyjścia
tab. 6 - Parametry interfejsu zewnętrznego
tab. 7 - Dopuszczalna jedna dodatkowa para połączeń
tab. 8 - Ustawienia domyślne dla pierwszego uruchomienia
tab. 9 - Konfigurowanie ustawień EtherNet/IP™
tab. 10 - Parametry cykliczne
tab. 11 - Parametry acykliczne
tab. 12 - Model pompy 92
tab. 13 - PumpHead
tab. 14 - Grubość ścianki
tab. 15 - Średnica wewnętrzna 95
tab. 16 - Model czujnika ciśnienia
tab. 17 - Rozmiar czujnika ciśnienia
tab. 18 - Model czujnika przepływu97
tab. 19 - Rozmiar czujnika przepływu97
tab. 20 - Przewodnik zgodności EDS
tab. 21 - Zespoły czujników
tab. 22 - Granice ciśnienia czujników
tab. 23 - Granice przepływu czujników 111
tab. 24 - Kody błędów
tab. 25 - Części zamienne napędu
tab. 26 - Ogólny przewodnik dotyczący czyszczenia rozpuszczalnikami
tab. 27 - Przewody w jednym odcinku do głowic pomp 720R 127
tab. 28 - Elementy sanitarne ze złączami trójzaciskowymi PVDF 128
tab. 29 - Elementy przemysłowe ze złączami wtykowymi PP Cam-and-Groove 128
tab. 30 - Modele przewodów w jednym odcinku 720R i 720RX 129
tab. 31 - Modele elementów LoadSure 720RE i 720REX
tab. 32 - Wartości graniczne wydajności pomp w obudowach 730
tab. 33 - Wartości graniczne wydajności pomp w obudowach 730

31.2 Rysunki

rys. 1 - Gama pomp 730	15
rys. 2 - Układanie pomp w stos	
rys. 3 - Kierunek wirnika	16
rys. 4 - Układ klawiatury i identyfikatory przycisków	19
rys. 5 - Uruchamianie i zatrzymywanie	20
rys. 6 - Korzystanie z przycisków góra i dół	20
rys. 7 - Prędkość maksymalna	20
rys. 8 - Zmień kierunek obrotów	20
rys. 9 - Przełącznik napięcia	21
rys. 10 - Ekranowanie uziemienia przewodów sterowania wEtherNet/IP™ module NEMA	22
rys. 11 - Podłączanie ekranu złącza M12	24
rys. 12 - Złącza RJ45	27
rys. 13 - Okablowanie 9-stykowego złącza D czujnika	27
rys. 14 - Moduł N i moduł F	31
rys. 15 - Połączenie Ethernet	32
rys. 16 - Adapter PCB	32
rys. 17 - Opcje zasilania	33
rys. 18 - Gwiazda	38
rys. 19 - Pierścień	
rys. 20 - Topologia linii	39
rys. 21 - Okablowanie czujnika	99
rys. 22 - Okablowanie czujnika	99
rys. 23 - Ustawianie poziomów alarmu/ostrzeżenia	112
rys. 24 - Ustawianie korekty nachylenia	114
rys. 25 - Ustawianie korekty przesunięcia	116
rys. 26 - Modele przewodów w jednym odcinku 720R i 720RX	129
rys. 27 - Modele elementów LoadSure 720RE i 720REX	131
rys. 28 - Wartości graniczne wydajności pomp w obudowach 730	134
rys. 29 - Wartości graniczne wydajności pomp w obudowach 730	135